cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Bahan Alam Terbarukan
ISSN : 23030623     EISSN : 24072370     DOI : -
This journal presents articles and information on research, development and applications in biomass conversion processes (thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion) and equipment to produce fuels, power, heat, and value-added chemicals from biomass. A biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstock. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol (see also alcohol fuel). The high-value products increase profitability, the high-volume fuel helps meet energy needs, and the power production helps to lower energy costs and reduce greenhouse gas emissions from traditional power plant facilities. Future biorefineries may play a major role in producing chemicals and materials that are traditionally produced from petroleum.
Articles 157 Documents
EKSTRAKSI MINYAK KETUMBAR (Coriander Oil) DENGAN PELARUT ETANOL DAN n-HEKSANA Handayani, Prima Astuti; Juniarti, Eqi Rosyana
Jurnal Bahan Alam Terbarukan Vol 1, No 1 (2012): June 2012
Publisher : Semarang State University

Show Abstract | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i1.2538

Abstract

Indonesia memiliki banyak sumber daya alam, diantaranya minyak atsiri. Salah satu sumber daya alam yang potensial adalah minyak biji ketumbar (coriandrum oil). Kandungan terbesar dalam minyak ketumbar adalah senyawa linalool yang dapat dimanfaatkan sebagai bahan baku parfum, farmasi, aroma makanan dan minuman, sabun mandi, bahan dasar lilin, sabun cuci, sintesis vitamin E dan pestisida maupun insektida. Tujuan dari percobaan ini adalah untuk mempelajari pengaruh penggunaan pelarut etanol dan n-heksana terhadap rendemen minyak ketumbar yang dihasilkan serta senyawa kimia yang terdapat dalam minyak ketumbar. Ekstraksi minyak ketumbar dengan pelarut etanol dan n-heksana menggunakan alat ekstraktor soxhlet. Biji ketumbar yang tua dan kering dihancurkan kemudian dibungkus kertas saring dan dimasukan dalam ekstraktor soxhlet. Temperatur proses ekstraksi sesuai dengan titik didih dari pelarut yang digunakan. Ekstraksi berakhir jika warna pelarut dalam ekstraktor seperti warna pelarut semula. Filtrat yang diperoleh kemudian di recovery dengan ekstraktor soxhlet untuk memisahkan minyak atsiri dari pelarutnya. Minyak ketumbar kemudian di analisis dengan uji GC-MS untuk mengetahui senyawa kimia yang terkandung dalam minyak tersebut. Dari hasil percobaan diperoleh bahwa rendemen minyak ketumbar dengan pelarut etanol sebesar 1,17% dengan kadar linalool sebesar 57,13%, sedangkan dengan pelarut n-heksana diperoleh rendemen minyak ketumbar sebesar 0,84% dengan kadar linalool sebesar 47,25%. Indonesia has many natural resources, such as the essential oils. One of the potential re-sources is the coriander seed oil (coriandrum oil). The greatest content in coriander oil is linalool compounds that can be used as raw materials of perfumes, pharmaceuticals, food and beverage scent, soap, basic materials for candles, laundry soap, synthetic vitamin E and pesticides as well as insecticide. The purpose of this experiment was to study the effect of the use of ethanol and n-hexane toward the yield of the resulted coriander oil and the chemical compounds in corriander oil. The extraction of Coriander oil with ethanol and n-hexane was performed using a Soxhlet extractor. The mature and dried Coriander seeds were crushed, then wrapped in filter paper and inserted in the Soxhlet extractor. The temperature of the extraction process was set according to the boiling point of the used solvent. The extraction process finishes if the color of the solvent in the extractor looks like the original color. The obtained filtrate was then recycled by using Soxhlet extractor to separate the essential oil from the solvent. Then, the Coriander oil was analyzed by test GC-MS method to determine the contained chemical compounds in the oil. The experimental result shows the yield of coriander oil obtained from the extraction using ethanol is 1.17% with linalool concentration of 57.13%, while the yield of the coriander oil from extraction using n-hexane is 0.84% with linalool concentration of 47.25%.
PENGOLAHAN BIJI MAHONI (Swietenia Macrophylla King) SEBAGAI BAHAN BAKU ALTERNATIF BIODIESEL Damayanti, Astrilia; Bariroh, Siti
Jurnal Bahan Alam Terbarukan Vol 1, No 1 (2012): June 2012
Publisher : Semarang State University

Show Abstract | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i1.2539

Abstract

Peningkatan kebutuhan minyak bumi yang terus menerus akan mengakibatkan kelangkaan bahan bakar minyak. Sumber energi alternatif yang ramah lingkungan, salah satunya adalah biodiesel. Bahan baku potensial untuk memproduksi biodiesel yang tidak bersaing dengan bahan baku pangan contohnya adalah biji mahoni (swietenia macrophylla king). Tahapan yang diperlukan dalam percobaan biodiesel adalah proses pengambilan minyak biji mahoni dengan proses penyangraian, degumming, dan proses transesterifikasi. Alat yang diperlukan dalam pembuatan biodiesel yaitu: labu alas bulat dilengkapi kondensor, gelas ukur, pengaduk magnetik, alat-alat gelas lab, dan lain sebagainya. Proses pengambilan minyak dilakukan dengan penyangraian yang hasilnya di degumming dengan asam fosfat 5% b/b pada suhu 80ºC selama 15 menit. Degumming bertujuan untuk menghilangkan getah, lendir, protein, resin dan gum. Proses kedua yaitu transesterifikasi dengan metanol 1:6 (minyak dan mtanol) dengan KOH 0,1 N pada suhu 60ºC selama 1 jam. Setelah diperoleh metil ester, dilakukan proses pencucian atau penetralan metil ester pada suhu pemanasan 104ºC untuk menghilangkan kadar airnya. Dari hasil percobaan diperoleh rendemen minyak sebesar 86,92%, uji densitas 874,08 kg/m³, viskositas 3,07 mm2/s, dan bilangan asam 0,5601 mg KOH/g. Metil ester yang dihasilkan telah sesuai dengan SNI-04-7182-2006. An increased demand of the fossil fuel would lead to scarcity of the fossil fuel in the future. An alternative of environmentally friendly energy sources is biodiesel. It is accounted that the resources for producing biodiesel should not compete with food raw materials, such as mahogany grain, (swietenia macrophylla king). The necessary steps in the experiment of producing biodiesel are process of taking the mahogany seed-oil by using roasting method, degumming, and transesterification process. The required equipments for producing biodiesel were round-bottom flask equipped with condenser, measuring cylinder, magnetic stirrer, other lab-glassware, etc. Firstly, the process of taking the oil from mahogany seed was carried by using roasting method; then the result was degummed by using 5wt% of Phosphate acid at 80 oC for 15 minutes. The degumming process was aimed to remove sap, mucus, proteins, resin and gum. The second step was transesterification process using methanol 1:6 (oil and methanol) and 0.1N KOH solutions, which was carried out at 60 oC for 1 hour. Once the methyl ester was produced, the next steps were washing and neutralization of methyl ester at heating temperature of 104 oC to remove the water content in the methyl ester. The obtained yield from the experiments was 86.92%. The tested density, viscosity, and the acid value were 874.08 kg/m³, 3.07 mm2/s, and 0.5601 mg KOH/g, respectively. The produced Methyl ester is in accordance with SNI-04-7182-2006.
BIODIESEL DARI CAMPURAN LEMAK SAPI (Beef Tallow) DAN MINYAK SAWIT Pita Rengga, Wara Dyah; Ernawati, Rosidah Erlis
Jurnal Bahan Alam Terbarukan Vol 1, No 1 (2012): June 2012
Publisher : Semarang State University

Show Abstract | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i1.2540

Abstract

Cadangan minyak bumi semakin menipis, sehingga dicari bahan bakar alternatif, salah satunya adalah biodiesel. Minyak nabati terutama minyak sawit merupakan bahan baku edible sedangkan lemak sapi merupakan bahan baku non-edible dengan biaya rendah dan memiliki ketersediaan tinggi pada produksi sapi. Pemanfaatan lemak sapi yang belum maksimal dapat digunakan bersama minyak sawit untuk menghasilkan biodiesel. Lemak sapi dicairkan supaya menjadi minyak sapi. Bahan baku minyak sapi dan minyak sawit dicampur dengan perban-dingan 3:1. Campuran minyak ditransesterifikasi dengan metanol dengan perbandingan molar (1:6) dan katalis NaOH. Proses dilakukan selama 90 menit pada suhu ±65°C. Hasil proses transesterifikasi adalah metil ester dan gliserol. Metil ester pada lapisan atas dipisahkan dari gliserol kemudian dilakukan pencucian. Metil ester atau biodiesel selanjutnya diuji angka asam, viskositas, densitas, dan analisis menggunakan GC-MS. Yield biodiesel yang dihasilkan dari campuran minyak sapi dan minyak sawit adalah 76%, angka asam 0,67124 mg-KOH/g, densitas 857,76 kg/cm³, dan viskositas 3,0074 mm2/s. Kesemua parameter tersebut sesuai dengan standart mutu SNI biodiesel. Kandungan metil ester dari minyak sawit dan lemak sapi adalah metiloleat dan metil palmitat. The availability of the fossil fuel is decreasing; hence the finding of an alternative fuels is very important. One of those alternative fuels is biodiesel. Vegetable oil, especially palm oil is the edible raw material, while the beef tallow is the non-edible raw material with low cost production and the availability is huge in the cattle production. The beef tallow mixed with palm oil can be used as raw material for producing biodiesel. Firstly, the beef tallow was melted into beef oil. The raw materials of beef tallow and palm oil were mixed with the composition ratio of 3:1. The resulted mixed-oil was transesterificated by adding methanol with molar ratio of 1:6 and NaOH as catalyst. The transesterification process was carried for 90 minutes at ±65°C. Transesterification process produces methyl ester and glycerol. The produced methyl ester on the upper layer was separated from the glycerol and then washed. The produced methyl ester was tested to determine the acid number, viscosity, and density. Analysis of the methyl ester components using GC-MS was also conducted. The experimental results show the yield of produced biodiesel from mixed-oil of beef tallow and palm oil (3:1) was 75.93%. The tested acid number, density, and viscosity were 0.67124 mg-KOH/g, 85.76 kg/cm³, and 3.0074 mm2/s, respectively. Data of the tested methyl ester properties are in accordance with the quality of standard ISO for methyl ester. The content of the produced methyl ester from the mixed-oil of beef tallow and palm oil are metiloleat and methyl palmitate.
MINYAK ATSIRI DARI KAMBOJA KUNING, PUTIH, DAN MERAH DARI EKSTRAKSI DENGAN N-HEKSANA -, Megawati; Dwi Saputra, Satrya Wahyu
Jurnal Bahan Alam Terbarukan Vol 1, No 1 (2012): June 2012
Publisher : Semarang State University

Show Abstract | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i1.2541

Abstract

Bunga kamboja merupakan jenis bunga yang banyak ditanam dan dapat tumbuh dengan baik serta merupakan bunga yang beraroma yang mempunyai nilai guna tinggi untuk diproduksi minyak atsirinya, yaitu minyak yang mudah menguap dan mengeluarkan aroma khas. Minyak atsiri ini mengandung lebih dari 30 jenis senyawa kimia, beberapa diantaranya merupakan senyawa-senyawa kimia yang sangat berharga, yang termasuk dalam golongan senyawa sesquiterpen, alkohol, alkana, resin, dan wax/parafin. Pada penelitian ini dilakukan ekstraksi minyak atsiri kamboja dengan 3 variasi jenis bunga, yaitu kamboja merah, kuning, dan putih. Metode ekstraksi yang dipilih menggunakan ekstraksi dengan n-heksana. Minyak kamboja diperoleh dengan menguapkan hasil ekstrak pada titik didih n-heksana sampai tidak didapatkan lagi embunan, dilanjutkan dengan analisis rendemen minyak. Sementara itu, analisis jenis komponen minyak atsiri kamboja menggunakan Gas Chromatography-Mass Spectrometry (GC-MS). Kadar minyak atsiri hasil ekstraksi dengan pelarut n-heksana dari masing-ma-sing jenis bunga kamboja berbeda, dari kamboja kuning (4,457%), kamboja putih (2,908%), dan dari kamboja merah (2,763%). Hasil analisis GC-MS juga menunjukkan bahwa masing-masing minyak atsiri kamboja memiliki komponen kimia yang berbeda-beda. Senyawa kimia golongan alkohol diantaranya geraniol (2,64%), farnesol (8,61%), dan oktadekanol (3,87%), masing-masing dalam kamboja kuning, putih, dan merah. Adapun senyawa golongan alkana diantaranya oktadekana sebesar 21,24% (kamboja kuning), nonadekana (7,54% pada kamboja putih), dan 7,84% pada kamboja merah. Frangipani is a type of flower which is widely grown and have a nice scent, this flower  have a high value in order to produce essential oils. This essential oil contains more than 30 different types of chemical compound; some of them are chemical compounds that are very valuable, which is included in the sesquiterpen compounds, alcohols, alcane, wax/resin, and paraffin. In this research, the extraction of the Frangipani oil was conducted using three different flowers, i.e. the red, yellow, and white frangipani. The chosen extraction method was the extraction using n-hexane. The Frangipani oil was obtained by vaporizing the extraction results on the boiling point of n-hexane until there was no condensate left, and then continued with the analysis of the yield  of the oil. The analysis of the component of the frangipani’s essential oils was conducted using Gas Chromatography-Mass Spectometry (GC-MS). The concentration of the essential oils as the result of the extraction using n-hexane solvent from each different type of frangipani was different, i.e. from the yellow frangipani (4,457%), white frangipani (2,908%), and from the red frangipani (2,736%). The results of the GC-MS analysis also showed that each frangipani oil has its own chemical component. The chemical substance from the group of alcohol such as geraniol (2,64%), farnesol (8,61%), and octadenol (3,87%) each found in the yellow, white and red frangipani. The alcane group found in the oil samples such as octadecane (21,24%) on yellow frangipani, nonadecane (7,54%) on white frangipani, and 7,84% on red frangipani.
KAJIAN PROSES PEMBUATAN TEPUNG BUAH MANGGA (Mangivera Indica L) VARIETAS ARUMANIS DENGAN SUHU PERENDAMAN YANG BERBEDA Paramita, Octavianti
Jurnal Bahan Alam Terbarukan Vol 1, No 1 (2012): June 2012
Publisher : Semarang State University

Show Abstract | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i1.2542

Abstract

Salah satu diversifikasi produk olahan yang menarik untuk dikembangkan adalah tepung da-ging buah mangga (mango powder) yang telah dikembangkan di negara India, Tepung buah mangga dapat digunakan sebagai bahan alternatif untuk membuat DF (dietary fibre), karena daging buah mangga mengandung pati yang banyak, tinggi selulosa, hemiselulosa, lignin dan carotin. Buah mangga  arumanis yang dibuat menjadi tepung mangga digunakan mangga arumanis yang belum matang / yang masih mentah. Proses perendaman sebelum dilakukan pengeringan sangat berpengaruh terhadap hasil dari tepung mangga yang dihasilkan baik berupa kandungan gizi dan warna. Penelitian ini bertujuan mendapatkan proses pembuatan tepung mangga varietas arumanis yang paling optimal hasilnya berdasarkan karakteristik fisik dan komposisi zat gizi. Proses pembuatan tepung mangga varietas arumanis yang paling optimal hasilnya dengan proses perendaman pada air dingin dan proses tersebut bisa dijadikan bahan dasar pembuatan olahan-olahan pangan yang tinggi serat. Karakteristik Fisik Tepung Mangga Arumanis dan Komposisi Zat Gizi Tepung Mangga Arumanis dengan proses Perendaman Air Dingin yaitu : Tepung berwarna putih kecoklatan, Tekstur : Halus, dan tidak tercium aroma mangga, Rendemen : 12,4 %., Kadar Serat : 3,7370 %, Kadar Vitamin C : 154,9944 mg/100 g, Kandungan Amilum/ Pati : 49,0419 % dan Kandungan Protein: 9,2856 %. One of the interesting diversification of the processed products to be developed is a mango pulp powder which has been developed in India. The mango flour can be used as an alternative material for making the dietary fiber (DF) because mango contains a lot of starch, high cellulose, hemicellulose, lignin, and carotin. The “arumanis” mango flour can be made from the immature “arumanis” mango fruits. The immersing process before drying greatly affect the quality of produced mangoes flour in terms of the nutrient composition and the colour. The study aimed to get the optimal results of the “arumanis” mangoes flour according to its characteristics and nutrient composition. The process of making the “arumanis” mangoes flour is optimally produced by immersion in the cold water. The resulted products from this process can be used as raw materials of producing food products with higher fiber content. The characteristics of the produced “arumanis” mangoes flour and its nutrient compositions, i.e. the powder colour is white-browned, the texture is smooth, doesn’t smell like mango, the yield is 12.4%, the fiber content is 3.7370%, the level of vitamin C is 154.9944 mg/100g, the starch content is 49.0419% and the protein content is 9.2856%.
PEMUNGUTAN MINYAK ATSIRI MAWAR (Rose Oil) DENGAN METODE MASERASI Damayanti, Astrilia; Fitriana, Endah Ayu
Jurnal Bahan Alam Terbarukan Vol 1, No 2 (2012): December 2012
Publisher : Semarang State University

Show Abstract | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i2.2543

Abstract

Minyak mawar merupakan salah satu produk minyak bunga yang memungkinkan diproduksi di Indonesia dengan kualitas ekspor. Manfaat dari minyak mawar adalah untuk parfum, kosmestik, dan obat-obatan. Minyak mawar dapat diproduksi dengan menggunakan metode diantaranya maserasi. Tujuan penelitian ini adalah mengetahui rendemen minyak atsiri mawar merah (Rosa damascena) dan komponen minyak atsiri yang terambil dengan etanol dan n-heksana. Bahan baku yang digunakan berupa mahkota bunga mawar sebanyak 50 gram yang dipotong kecil-kecil, kemudian direndam dalam pelarut dengan perbandingan 1:3. Pelarut yang digunakan yaitu etanol dan n-heksana. Proses maserasi dilakukan dengan pengadukan selama 1 menit secara manual pada suhu ruang dan didiamkan selama 12 jam di tempat tertutup dan gelap (tanpa terkena cahaya). Hasil maserasi berupa ekstrak mawar dipisahkan dengan cara penyaringan dan pemerasan bunga. Filtrat yang mengandung minyak bunga mawar dievaporasi dengan  rotary vacuum evaporator. Maserasi menggunakan etanol pada suhu 60ºC selama 20 menit, sedangkan maserasi menggunakan n-heksana pada suhu 55 ºC selama 10 menit. Minyak atsiri hasil maserasi bunga mawar merah dilakukan uji GC-MS. Komponen utama minyak atsiri dari bunga mawar dengan pelarut etanol dan pelarut n-heksana secara berurutan adalah phenyl ethyl alcohol (2,73%) dan (31,69%). Rendemen hasil maserasi minyak bunga mawar dengan pelarut etanol adalah 8,76%, sedangkan pelarut n-heksana menghasilkan 0,34 %. Rose oil is one of the flower oil products which is potentially produced in Indonesia with export quality. The uses of rose oils are for perfume, cosmestics, and medicine. Rose oil can be produced using methods such as maceration. The purpose of this reasearch was to determine the yield of essential oil of red roses (Rosa damascena) and the essential oil components taken using ethanol and n-hexane. The raw material used was 50 grams of red roses which subsequently soaked into solvent with ratio of 1:3. The solvent used were ethanol and n-hexane. Maceration process was carried out by manually stirring for 1 minute at room temperature and kept for 12 hours in a closed and dark (without exposure to light) place. Maceration result in the form of rose extract was separated by filtration and extortion of flowers. The filtrate containing rose oil was evaporated using rotary vacuum evaporator. Maceration temperature using ethanol was 60 ºC for 20 minutes, while using n-hexane was 55ºC for 10 minutes. The essential oils produced from maceration process of red roses was analysed using GC-MS. The main components of the essential oil of roses extracted using solvents of ethanol and n-hexane sequentially were phenyl ethyl alcohol (2.73%) and (31.69%). The yield of the rose oil maceration with ethanol was 8.76%, while the solvent of n-hexane yield 0.34%.
SINTESIS BIODISEL DARI MINYAK BIJI KARET DENGAN VARIASI SUHU DAN KONSENTRASI KOH UNTUK TAHAPAN TRANSESTERIFIKASI Kusumaningtyas, Ratna Dewi; Bachtiar, Achmad
Jurnal Bahan Alam Terbarukan Vol 1, No 2 (2012): December 2012
Publisher : Semarang State University

Show Abstract | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i2.2544

Abstract

Bahan bakar yang paling banyak digunakan adalah bahan bakar diesel atau fatty acid methyl ester (FAME). Biodiesel berasal dari minyak nabati yang dapat diperbaharui, dapat dihasilkan secara periodik, dan mudah diperoleh. Pada penelitian ini digunakan minyak biji karet untuk sintesis FAME. Proses utama dalam pembuatan FAME adalah transesterifikasi. Penelitian ini mengkaji hasil optimum dari variasi konsentrasi katalis KOH dan suhu reaksi pada reaksi transesterifikasi. Preparasi minyak biji karet dengan menggunakan arang aktif granular diikuti dengan degumming. Reaksi esterifikasi dilaksanakan pada kondisi operasi 500 C selama 1 jam, katalis asam sulfat (98%) sebesar 0,5% volume minyak, dan metanol sebesar 20% volume minyak. Reaksi transesterifikasi dilaksanakan selama 1 jam, serta perbandingan volume minyak dan metanol sebesar 4:1. Analisis kadar metil ester yang terbentuk, jumlah komponen, dan komposisinya yang terdapat pada senyawa hasil dilakukan dengan menggunakan alat GC. Kondisi operasi terbaik pada transesterifikasi minyak biji karet menjadi metil ester adalah pada katalis KOH 1% dan suhu 60 0C. Berdasarkan uji sifat-sifat fisis, metil ester yang dihasilkan belum semua memenuhi mutu sifat fisis biodiesel yang disyaratkan. The most widely used fuel is diesel fuel or fatty acid methyl ester (FAME). Biodiesel is derived from vegetable oil that can be renewed, can be produced periodically, and easy to obtain. In this research, the rubber seed was used for synthesizing the FAME. The main process in the production of FAME is transesterification. This study examined the optimum result from variations of the concentration of KOH catalyst and the reaction temperature on the transesterification reaction. Preparation of the rubber seed oil using granular activated charcoal was followed by degumming. Esterification reaction was carried out at 50 oC for 1 h with the sulfuric acid catalyst of 0.5% by volume of oil and methanol of 20% by the volume of oil. Transesterification reaction was carried out for 1 hour with the oil and methanol volume ratio of 4:1. The concentration of methyl ester, the number of components, and the composition of the contained compounds in the resulted products were analyzed using a GC. The best operating conditions on the transesterification of rubber seed oil into methyl ester was by using 1% KOH catalyst at temperature of 60 0C. Based on the analysis of the physical properties, the resulted methyl esters need to be improved further to meet the quality requirements of the physical properties of biodiesel.
PEMANFAATAN KULIT BUAH NAGA (Dragon Fruit) SEBAGAI PEWARNA ALAMI MAKANAN PENGGANTI PEWARNA SINTETIS Handayani, Prima Astuti; Rahmawati, Asri
Jurnal Bahan Alam Terbarukan Vol 1, No 2 (2012): December 2012
Publisher : Semarang State University

Show Abstract | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i2.2545

Abstract

Kulit buah naga merupakan limbah hasil pertanian yang mengandung zat warna alami antosianin cukup tinggi. Antosianin merupakan zat warna yang berperan memberikan warna merah yang berpotensi menjadi pewarna alami untuk pangan dan dapat dijadikan alternatif pengganti pewarna sintetis yang lebih aman bagi kesehatan. Pengambilan zat warna antosianin dilakukan dengan metode ekstraksi. Pelarut yang digunakan adalah aquades. Variabel penelitian antara lain varietas buah naga, konsentrasi asam sitrat dalam pelarut, suhu ekstraksi, dan waktu ekstraksi. Potongan kulit buah naga diekstraksi dengan pelarut aquades dan asam sitrat dengan perbandingan tertentu, pada suhu ekstraksi 25-800C dan waktu ekstraksi 0,5-3 jam. Analisis kadar antosianin dilakukan dengan analisa antosianin metode Glusti dan Wrolstad. Hasil percobaan diperoleh bahwa varietas buah naga daging merah menghasilkan kadar antosianin terbesar 22,59335 ppm. Selain itu kadar antosianin terbesar diperoleh pada variasi pelarut aquades:asam sitrat (5:1) 26,4587 ppm, variasi pada suhu kamar menghasilkan 21,5028 ppm dan waktu pengadukan  3 jam menghasilkan 23,3027 ppm. Pewarna alami ini telah diaplikasikan pada makanan dan diujikan pada tikus putih, hasil uji coba menunjukkan pewarna buah naga dapat dipakai sebagai pewarna alami makanan. Dragon fruit peel is agricultural waste which contains quite high natural pigments of anthocyanins. Anthocyanin is a dye that potentially provides a red natural colorant for food and alternatively used as synthetic dye which is safe for health. In this study, the process of taking anthocyanin was conducted using extraction method. The solvent used was distilled water. The variables observed in the research include dragon fruit varieties, the concentration of citric acid in the solvent, extraction temperature, and extraction time. The dragon fruit peel was extracted using solvents of distilled water and citric acid at a certain ratio, at extraction temperature varies from 25-80oC with the extraction time varies from 0.5 to 3 hours. The analysis of anthocyanin concentration was conducted by using Glusti and Wrolstad method. The experimental result shows the red dragon fruit varieties produced the greatest concentration of anthocyanin (22.59335 ppm). Moreover, the result shows the greatest concentration of anthocyanin obtained from the following variations, i.e. the 5:1 solvent ratio of distilled water : citric acid produces 26.4587ppm,  the extraction at room temperature produced 21.5028 ppm, and the extraction for 3 hours stirring produced 23.3027 ppm. The extracted dragon fruit dye has been applied for food and tested on white mice; the test result shows the dye can be used as a natural food dye.
PENGAMBILAN MINYAK ATSIRI BUNGA CENGKEH (Clove Oil) MENGGUNAKAN PELARUT n-HEKSANA DAN BENZENA Hadi, Saiful
Jurnal Bahan Alam Terbarukan Vol 1, No 2 (2012): December 2012
Publisher : Semarang State University

Show Abstract | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i2.2546

Abstract

Minyak cengkeh merupakan salah satu jenis minyak atsiri yang dapat diperoleh dari bunga, tangkai atau gagang bunga dan daun cengkeh. Kandungan minyak atsiri bunga cengkeh mencapai 21,3% dengan kadar eugenol antara 78-95%, dari tangkai atau gagang bunga mencapai 6% dengan kadar eugenol antara 89-95%, dan dari daun cengkeh mencapai 2-3% dengan kadar eugenol antara 80-85%. Kandungan terbesar minyak cengkeh adalah eugenol, yang bermanfaat dalam pembuatan vanilin, eugenil metil eter, eugenil asetat, dll. Ektraksi dengan pelarut adalah salah satu metode yang digunakan untuk ekstraksi minyak atsiri bunga cengkeh. Pelarut yang digunakan dalam proses ekstraksi adalah n-heksana dan benzena. Penelitian ini bertujuan untuk mengetahui rendemen yang diperoleh dengan menggunakan pelarut n-heksana dan benzene serta mengetahui komponen-komponen minyak cengkeh yang terambil dengan pelarut n-heksana dan benzena. Tahapan penelitian diawali dengan mengeringkan bunga cengkeh dengan dijemur di bawah sinar matahari selama 1 minggu. Setelah itu, bu-nga cengkeh kering ditumbuk sampai halus. Bunga cengkeh diekstraksi menggunakan soxhlet dengan 100 mL pelarut pada suhu didihnya selama 15 siklus (+ 80 menit). Dari percobaan yang telah dilakukan dihasilkan rendemen ekstrak bunga cengkeh dengan pelarut n-heksana sebesar 17,61% dan kadar eugenol 65,02%. Sedangkan dengan pelarut benzene, rendemen ekstraks bunga cengkeh sebesar 18,90% dan kadar eugenol 8,81%. Oleh karena itu, ekstraksi minyak atsiri bunga cengkeh dengan menggunakan pelarut n-heksana relatif lebih baik karena memberikan kadar eugenol lebih besar daripada pelarut benzena. Clove oil is one of the essential oils obtained from the cloves, stalks or clove steam and clove leaf. The clove contains 21.3% of the essential oils with the eugenol content of 78-95%, the clove stalk contains 6% of the essential oils with the eugenol content of 89-95%, and the clove leaf contains 2-3% of the essential oils with the eugenol content of 80-85%. The clove oil is mostly composed of eugenol, which is useful in the production of vanillin, eugenil methyl ether, eugenil acetate, etc. The extraction using solvent is one of the methods used for the extraction of essential oils of clove flower. The solvents used for the extraction process were n-hexane and benzene. This study aimed to determine the yield of the essential oil obtained from the extraction using n-hexane and benzene as well as to know its components. The first step of the process was initiated by drying the cloves in the sun for a week. Then the dried cloves were finely ground. Clove was extracted using a Soxhlet with 100 mL of solvent at its boiling temperature for 15 cycles (+ 80 minutes). The obtained yield of the extraction process using n-hexane was 17.61% with the eugenol content of 65.02%. While the obtained yield from the extraction process using benzene solvent was 18.90% with the eugenol content of 8.81%. Therefore, the clove essential oil extraction using n-hexane solvent is relatively better than using benzene because it produces greater eugenol content.
OPTIMASI YIELD ETIL P METOKSISINAMAT PADA EKSTRAKSI OLEORESIN KENCUR (Kaempferia galanga) MENGGUNAKAN PELARUT ETANOL Setyawan, Eko; Putratama, Pandhu; Ajeng, Asriningtyas; Pita Rengga, Wara Dyah
Jurnal Bahan Alam Terbarukan Vol 1, No 2 (2012): December 2012
Publisher : Semarang State University

Show Abstract | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i2.2547

Abstract

Kencur (Kaempferia galanga L.) banyak digunakan sebagai bahan baku obat tradisional (jamu), fitofarmaka, industri kosmetika, industri makanan, dan industri insektisida. Minyak atsiri rimpang kencur mengandung etil sinnamat dan metil p-metoksi sinamat (EPMS). Ekstraksi oleoresin kencur dilakukan dengan etanol sebagai pelarut. Optimasi yield EPMS diteliti terhadap perbandingan massa serbuk kering kencur dan etanol dan waktu ekstraksi. Perbandingan kencur : etanol yang digunakan adalah 1 : 2, 1 : 3, dan 1 : 4. Waktu operasi yang digunakan adalah 2 s.d 5 jam. Tahapan proses ekstraksi oleoresin kencur adalah preparasi bahan, ekstraksi, evaporasi dan pemurnian. Oleoresin hasil ekstraksi dianalisis dengan uji GC-MS untuk mengetahui kandungan EPMS dan kandungan minyak atsiri lain dalam oleoresin kencur. Oleoresin hasil ekstraksi berwarna coklat tua dengan yield antara 6-8%. Kandungan EPMS dalam oleoresin bervariasi antara 67,77 hingga 87,57%. Massa oleoresin optimal hasil ekstraksi adalah 6,09 gram pada perbandingan kencur dan etanol 1:4 selama 4 jam. Pendekatan persamaan hasil ekperimen ekstraksi kencur dan etanol menghasilkan titik optimal EPMS pada waktu ekstraksi 3,62 dengan massa EPMS 6,04 gram Lesser galangal (Kaempferia galanga L.) is widely used as a traditional medicine (herbal medicine), fitofarmaka, cosmetics industry, food industry, and insecticide industry. The essential oils in the Lesser galangal contain ethyl sinnamat and methyl p-methoxy cinnamic (EPMS). The oleoresin extraction of Lesser galangal was performed using ethanol as a solvent. Optimization of the EPMS yield was investigated to dry powder mass ratio of Lesser galangal and ethanol as well as the extraction time. The ratio of Lesser galangal : ethanol was  varied from 1: 2, 1: 3 and 1: 4. The chosen operating time were 2 to 5 hours. The procedure of the oleoresin extraction process of Lesser galangal includes the preparation of materials, extraction, evaporation and purification. The extracted oleoresin was analyzed by GC-MS to determine the content of Ethyl P-methoxycinnamate (EPMS) and other volatile oil content in the oleoresin of Lesser galangal. The extracted oleoresin color was light brown to dark brown with the yield of between 6.31 to 8.3%. The EPMS content of the oleoresin varies between 67.77 to 87.57%. The optimum mass of the extracted oleoresin was 6.09 gram for 1:4 ratio of Lesser galangal : ethanol and 4 hours of the extraction time. The equation approach of the experimental results of Lesser galangal and ethanol produced the EPMS optimum point at the extraction time of 3.62 hours and EPMS mass of 6.04 grams.

Page 1 of 16 | Total Record : 157