cover
Contact Name
Prof. Rochmadi
Contact Email
aseanjournal@gmail.com
Phone
62-274-6492171
Journal Mail Official
aseanjournal@gmail.com
Editorial Address
Chemical Engineering Department, Gadjah Mada University
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
ASEAN Journal of Chemical Engineering
ISSN : -     EISSN : -     DOI : -
The ASEAN Chemical Engineers as well as some Japanese Chemical Engineers organized a symposium for the ASEAN chemical engineers since 1994. This is called "Regional Symposium of Chemical Engineering - RSCE". The primary objectives of this symposium is to serve as venue for the dissemination of the research output done by chemical engineers, to establish linkages among the chemical engineers in the ASEAN region, and lastly, the need for Japan to strengthen ties with ASEAN countries.
Arjuna Subject : -
Articles 239 Documents
Evaluating Climate Change Mitigation Options in the Philippines with Analytic Hierarchy Process (AHP) Michael Angelo B. Promentilla; Carla Angeline M. De la Cruz; Katrina C. Angeles; Kathrina G. Tan
ASEAN Journal of Chemical Engineering vol. 13 no.1 (2013)
Publisher :

Show Abstract | Original Source | Check in Google Scholar | Full PDF (977.123 KB)

Abstract

The environmental problem of climate change is an issue that needs to be addressed worldwide. As the electricity-generating power sector is the largest contributor of CO2 in the country, low-carbon technologies or sustainable energy systems are being considered as viable alternatives to reduce the CO2 emissions from this sector. These are fossil-based power plants with carbon capture and storage (F-CCS) technology, nuclear energy (NE) and renewable energy (RE) technologies, particularly solar energy (SE), wind energy (WE), hydroelectricity (HE), geothermal energy (GE) and biomass (BE). However, successful implementation of any of these CCMOs depends not only on the technical and economic aspect but also the socio-political aspect of the project. This study therefore proposes an analytical decision modeling framework to evaluate these options by incorporating the subjective judgment of stakeholders. The Analytic Hierarchy Process (AHP) was used to structure the problem and quantify the relative preference of each option with respect to four criteria namely environmental effectiveness (EE), economic viability (EV), technical implementability (TI), and social acceptability (SA).Results from the decision model indicate that the most important criterion is environmental effectiveness, and the least important is social acceptability. With respect to environmental effectiveness, their most preferred CCMO was solar energy whereas their least preferred is nuclear energy mainly because of the risk posed by the generated nuclear wastes. With respect to economic viability, their most preferred CCMO was geothermal energy, and the least preferred was nuclear energy. With respect to technical implementability, the respondents gave the highest preference weight on geothermal energy and the least preferred is nuclear energy. With respect to social acceptability, the most preferred was wind energy and again, the least preferred was nuclear energy.
The Initial Dioxigenase Gene Squences Analysis of Marine Bacteria Strain M128 Muhamad Sahlan; Hanif Yuliani; Heri Hermansyah; Anondho Wijanarko
ASEAN Journal of Chemical Engineering vol. 13 no.1 (2013)
Publisher :

Show Abstract | Original Source | Check in Google Scholar | Full PDF (953.401 KB)

Abstract

Biodegradation of polyaromatic hydrocarbons (PAHs) are catalyzed by multicomponent enzymes from microbe. The initial dioxygenase was used as a key enzyme for attacking the aromatic ring structure of PAHs, furthermore its initial dioxygenase gene was used to select PAHs degrading bacteria. Marine bacteria M128 strain could grow on medium contained PAHs. Detection of its cellular initial deoxygenase gene was done by nahAc gene amplification. The nahAc gene commonly used as biomarkers of PAH degradation, and as a result, nahAc gene sequence analysis of marine bacteria M128 strain was similar to naphthalene dioxygenase of Pseudomonas genera with 99% homology.
Synthesis of Ternary Homogeneous Azeotropic Distillation Sequences: 2. Flowsheet Identification Sutijan; Megan Jobson; Robin Smith
ASEAN Journal of Chemical Engineering vol. 13 no.1 (2013)
Publisher :

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1102.008 KB)

Abstract

This paper presents a systematic methodology for flowsheet generation for separating binary azeotropic mixtures using homogeneous azeotropic distillation. A new classification system for ternary mixtures using ‘standard distillation line maps’ defined in Sutijan et al. (2012) is employed. The new characterisation system is able to link candidate entrainers to flowsheet structures which can facilitate the separation. The sequences considered include pressure-swing distillation, two and three-column flowsheets with or without boundary crossing and the use of single and double-feed columns. For a given ternary mixture, suitable flowsheet structures that can facilitate the separation can be automatically identified. The method is illustrated using examples.
Effect of Ethylene-Vinyl Acetate Copolymer on Properties of Acrylonitrile-Butadiene-Styrene/Zinc Oxide Nanocomposites Sirirat Wacharawichanant; Lalitwadee Noichin; Sutharat Bannarak
ASEAN Journal of Chemical Engineering vol. 13 no.1 (2013)
Publisher :

Show Abstract | Original Source | Check in Google Scholar | Full PDF (864.827 KB)

Abstract

Mechanical and morphological properties of acrylonitrile-butadiene-styrene (ABS)/zinc oxide (ZnO) nanocomposites used ethylene-vinyl acetate copolymer (EVA) as compatibilizer were investigated. The ABS/ZnO nanocomposites without and with EVA 4 wt% were prepared by melting-blend with an internal mixer. The results showed that the addition of ZnO nanoparticles did not improve the mechanical properties of ABS/ZnO nanocomposites. The impact strength of the ABS/ZnO nanocomposites decreased with increasing ZnO content. The addition of EVA in ABS showed a decrease the impact strength but increased after adding ZnO in ABS/EVA matrix. The ABS/ZnO nanocomposites with EVA was higher the percent strain at break, but lower Young’s modulus, tensile strength and impact strength than the neat ABS and ABS/ZnO nanocomposites. The percent strain at break of ABS/ZnO nanocomposites increased with incorporation of EVA all ZnO compositions. However, the poor compatibility between ethylene in EVA and ABS matrix reduced as most of the mechanical properties of ABS/EVA/ZnO nanocomposites. The ZnO particle distributions in nanocomposites were studied by scanning electron microscopy (SEM), which observed that ZnO particles agglomerated in ABS and ABS/EVA matrix. The fractured surfaces of impact test samples were also observed through SEM and revealed that the ductile fracture of ABS was converted to brittle fracture with addition of ZnO.
Removal of Acid Blue 158 from Solution by Sunflower Seed Hull Siriwan Srisorrachatr; Paranee Sriromreun
ASEAN Journal of Chemical Engineering vol. 13 no.1 (2013)
Publisher :

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1048.665 KB)

Abstract

The removal of Acid Blue 158, acid dye for textile dyeing, from aqueous solution by sunflower seed hull was studied. The extent of adsorption capacity was studied as a function of heating temperature, sulphuric acid treatment, adsorbent size and pH of the solution. Sunflower seed hull was heated at 200, 300 and 400oC in oxygen deficient conditioned furnace. As the results, the sunflower seed hull heated at 200oC was the best absorbent for the dye removal with the maximum value of 30.84% at pH 4. Furthermore, removal ratio of Acid Blue 158 increased when the adsorbent was treated with 2M sulphuric acid. Particle sizes examined in this study were 250-355, 710-2000 and over 2000 micrometer. It was showed that the size of adsorbent affected on the removal capacity, i.e. the removal capacity increased along with the decrease of the size of absorbent. pH of the solution was studied between 1 and 6, and it was found that the optimum pH was pH 2. At the optimum condition, the modified adsorbent showed the removal ability of about 50%. The results obtained under the conditions of pH 4, 2M H2SO4 treatment of sunflower seed hull and the size of 500-710 micrometer at room temperature, the adsorption isotherm was fitted to Langmuir adsorption model, and the maximum adsorption capacity, qm, of 18.52 mg/g and Langmuir adsorption constant, Kl, of 5.25x10-3 L/mg were obtained.
Thermomechanical Properties of KevlarTM Reinforced Benzoxazine-Urethane Alloys Rimdusit S; Okhawilai M.; Kasemsiri P.
ASEAN Journal of Chemical Engineering vol. 13 no.1 (2013)
Publisher :

Show Abstract | Original Source | Check in Google Scholar | Full PDF (774.403 KB)

Abstract

Ballistic armor is one of an important application which required high performance of fiber-reinforced polymer due to its outstanding specific mechanical properties. Therefore, KevlarTM reinforced benzoxazine-urethane alloys as ballistic impact resistance composites were developed in this research. The polybenzoxazine alloy composites were fabricated by compression molding at 200ºC and 5 MPa by a compression molder. The amount of urethane fraction in the alloy matrix was ranging from 0-40wt% while the fiber content was kept constant at 80wt%. The mechanical properties of the matrix alloys and their KevlarTM fiber composites were characterized by dynamic mechanical analysis and universal testing machine. The results revealed that storage modulus at room temperature of the composites was reduced from 16.82 GPa when using the neat polybenzoxazine as a matrix to the value of 11.89 GPa at 40wt% of urethane content in the alloy matrix. Moreover, the more urethane in the alloy matrix resulted in lower flexural modulus of the KevlarTM composites i.e. 22 GPa when using the neat polybenzoxazine as a matrix to the value of 12 GPa when using 40wt% of urethane in the alloy matrix. Interestingly, glass transition temperature (Tg) obtained from the maximum peak of the loss modulus was observed to be in the range of 187-247ºC, which was significantly higher than those of the two parent polymers. Furthermore, the activation energy of the alloys was found to increase with increasing urethane content, which corresponded to the observed Tg value enhancement. The observed synergism in Tg of KevlarTM reinforced benzoxazine-urethane was an outstanding characteristic for a wide range of applications, which requires high thermal stability.
Effects of Vacuum Drying on Structural Changes of Banana Slices Wannapit Junlakan; Ram Yamsaengsung; Supawan Tirawanichakul
ASEAN Journal of Chemical Engineering vol. 13 no.1 (2013)
Publisher :

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1048.835 KB)

Abstract

The objective of this research was to study the optimum condition for the vacuum drying of banana slices using a vacuum dryer and to find out the appropriate thin layer equation for predicting the drying kinetic of bananas. The experiments were carried out at the drying temperatures of 60, 70, 80 and 90oC and absolute chamber pressure of 30 mmHg. The drying experiments were performed until the samples moisture content was lower than 3.4% (w.b.). Next, the dried products were analyzed for physical quality (in terms of color, shrinkage, and texture) and sensory quality (in terms of color, texture, flavor, crispness and overall acceptability). These data were used in choosing the optimum condition for the vacuum drying of banana slices. From experimental results, the drying time at the highest drying temperature was the shortest. At this condition, the dried banana slices showed the highest degree of yellowness, lower shrinkage, and more crispness compared to lower drying temperatures. From sensory analysis, each drying condition showed significant effect on consumer acceptability with the drying temperature of 70, 80 and 90oC showing the levels of the overall acceptability sensory qualities of dried banana is not significantly different. Consequently, the drying temperature of 90oC was suggested as the best drying condition for sliced bananas. Moreover, three mathematical models (Newton, Logarithmic and Page) describing thin layer drying were investigated. It was found that the thin layer equation providing the highest coefficient of determination (R2) and the lowest chi-square (X2) and root mean square error (RMSE) was the Logarithmic equation.
Effect of Ultrasonic During Preparation on Cu-Based Catalyst Performance for Hydrogenation of C02 to Methanol M Nasikin; A Wahid
ASEAN Journal of Chemical Engineering vol. 5 no. 2 (2005)
Publisher :

Show Abstract | Original Source | Check in Google Scholar | Full PDF (238.724 KB)

Abstract

Indonesia is rich in natural gas resources. These resources contain hydrocarbons and impurities such as C02. C02 creates a difficulty in further gas treatment and also becomes an environmental problem. Therefore, it is needed to develop a concept to recover this kind of gas and to convert it into more useful chemicals. Catalytic hydrogenation to methanol is one of the technologies that can be considered. Conversion of C02 to methanol can be catalyzed by Cu-based catalyst. Reported tobe the best catalyst, this catalyst is selected as a catalyst for a pilot plant that is operated at a high pressure and a high temperature. However, further development is needed to rearrange the synthesis to be operated both at lower pressure and temperature. For this system, it is needed to increase its catalytic activity. One of the alternatives is to apply a catalyst preparation method using ultrasonic effect. In this research work, CuO/ZnO/AJp3 catalyst with Cr as a promoter was prepared by co-precipitation method. The effect of ultrasonic on catalyst performance, which was irradiated to the catalyst during preparation, was investigated. Co-precipitation was conducted by using carbonate salt for respective metal cations added to the catalyst. Ultrasonic wave was irradiated to the catalyst preparation chamber with 40kHZ and time variable. The characteristics of the catalyst were analyzed by BET method for surface area, while SEM and H2 chemical adsorption were conducted to determine active site dispersion. A high-pressure continuous flow reactor was used for catalyst activity and stability test. The test was conducted at an operation condition of 30 bars and 200-30QoC. The effect of ultrasonic on the CuO/ZnO/AJp3 catalyst shows that ultrasonic irradiation enhances the catalyst surface from 23 to 50 m2/g. SEM analysis shows the change of catalyst morphology to be more uniform and the catalyst particle becomes smaller. The activity test shows that the catalyst with 60 min irradiation time has the highest activity in the hydrogenation of C02 to methanol at 30 bars and at 275°C. Keywords: Hydrogenation, dispersion, methanol, and ultrasonic.
An Interesting Final-Year Undergraduate Laboratory Project: Investigation of Gypsum Scale Formation on Piping Surfaces S. Muryanto; H M Ang
ASEAN Journal of Chemical Engineering vol. 5 no. 2 (2005)
Publisher :

Show Abstract | Original Source | Check in Google Scholar | Full PDF (428.33 KB)

Abstract

The formation of scales in pipes and on the surfaces of vessels is one of the major problems encountered by the mineral processing industry in Australia and elsewhere. A cursory study revealed that one of the main components of the scales was gypsum or calcium sulfate dihydrate. This paper discusses a typical undergraduate laboratory project to investigate the formation of calcium sulfate dihydrate scale on the surfaces of different types of pipes under isothermal conditions. This laboratory exercise is essentially a crystallization process and is suggested as one of the topics for final-year chemical engineering undergraduate project since it is a very important unit operation in the chemical, mineral, or pharmaceutical industries. Keywords: Calcium sulfate dihydrate, laboratory project, scale formation, and undergraduate curriculum..
Utilization of Mathematical Software Packages in Chemical Engineering Research Ang Wee Lee; Nayef Mohamed Ghasem; Mohamed Azlan Hussain
ASEAN Journal of Chemical Engineering vol. 5 no. 2 (2005)
Publisher :

Show Abstract | Original Source | Check in Google Scholar | Full PDF (267.088 KB)

Abstract

Using Fortran taken as the starting point, we are now on the sixth decade of high-level programming applications. Among the programming languages available, computer algebra systems (CAS) appear to be a good choice in chemical engineering can be applied easily. Until the emergence of CAS, the assistance from a specialized group for large-scale programming is justified. Nowadays, it is more effective for the modern chemical engineer to rely on his/her own programming ability for problem solving. In the present paper, the abilities of Polymath, Maple, Matlab, Mathcad, and Mathematica in handling differential equations are illustrated for differential-algebraic equations, large system of nonlinear differential equations, and partial differential equations. The programming of solutions with these CAS are presented, contrasted, and discussed in relation to chemical engineering problems. Keywords: Computer algebra systems (CAS),computer simulation,Mathcad, Mathematica,Mathlab and numerical methods.

Page 1 of 24 | Total Record : 239