cover
Contact Name
Muhammad Arifudin Lukmana
Contact Email
arifudin@upnvj.ac.id
Phone
-
Journal Mail Official
jurnalbinateknika@gmail.com
Editorial Address
-
Location
Kota depok,
Jawa barat
INDONESIA
Bina Teknika
ISSN : 16938550     EISSN : 26571374     DOI : -
Core Subject : Engineering,
Bina Teknika pertama publikasi tahun 2007, dengan registrasi ISSN dari LIPI Indonesia. Jurnal ini dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai isu Keteknikan, baik secara nasional maupun internasional. Artikel ilmiah dimaksud berupa kajian teori (theoritical review) dan kajian empiris dari ilmu terkait, yang dapat dipertanggungjawabkan serta disebarluaskan secara nasional maupun internasional. Bina Teknika menerima artikel ilmiah dengan area penelitian pada: 1. Teknik Mesin 2. Teknik Perkapalan 3. Teknik Industri 4. Teknik Elektro Dengan artikel yang memiliki sitasi primer dan tidak pernah dipublikasikan secara online atau versi cetak sebelumnya. Bina Teknika sebagai bagian dari semangat menyebarluaskan ilmu pengetahuan hasil dari penelitian dan pemikiran untuk pengabdian pada Masyarakat luas, situs Bina Teknika menyediakan artikel-artikel jurnal untuk diunduh secara gratis. Jurnal Bina Teknika adalah jurnal ilmiah nasional yang merupakan sumber referensi akademisi. Dengan jadwal terbit 2 (dua) kali setahun, yaitu Juni dan Desember.
Arjuna Subject : -
Articles 14 Documents
Search results for , issue " Vol 14, No 2 (2018): Bina Teknika" : 14 Documents clear
PERAHU NELAYAN MENGGUNAKAN JERIGEN PLASTIK BEKAS UNTUK MENINGKATKAN KESEJAHTERAAN NELAYAN Suranto, Purwo Joko; Sudjasta, Bambang
Bina Teknika Vol 14, No 2 (2018): Bina Teknika
Publisher : Fakultas Teknik UPN "Veteran" Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1164.209 KB)

Abstract

Perahu nelayan adalah suatu sarana yang dapat mengapung di air yang digunakan oleh para nelayan untuk mencari dan menangkap ikan di sungai maupun di laut. Perahu nelayan merupakan sarana yang paling penting bagi para nelayan untuk digunakan mencari dan menangkap ikan, tanpa adanya perahu maka nelayan tidak bisa mencari nafkah untuk keluarganya. Di Indonesia cukup banyak sekali masyarakat perkampungan nelayan, dikarenakan Indonesia merupakan negara kepulauan dimana setiap pulau dikelilingi oleh lautan. Mereka tersebar dan hidup bermukim di daerah-daerah pinggiran pantai atau pesisir pantai di seluruh wilayah kepulauan Indonesia. Mahalnya harga perahu nelayan, sehingga banyak nelayan yang tidak mempunyai perahu sendiri. Kebanyakan mereka bekerja pada juragan-juragan kapal sebagai buruh nelayan, dengan demikian penghasilan mereka tidak mencukupi untuk memenuhi kebutuhan keluarga. Dilain pihak banyak sekali jerigen-jerigen plastik bekas tempat minyak yang tidak dimanfaatkan sehingga bisa menjadi limbah, jerigen-jerigen plastik inilah yang akan dimanfaatkan untuk pembuatan perahu nelayan. Tentunya didesain dan dihitung kekuatan serta stabilitas dari perahu tersebut, sehingga terjamin keselamatan nelayan dalam mencari ikan di laut. Ukuran pokok Perahu yaitu Panjang Perahu Keseluruhan (Loa) = 3,80 m, Panjang Perahu antara Garis Tegak (Lpp) = 3,40 m, Sarat Perahu (T) = 0,400 m, Lebar Kapal (B) = 0,858 m, Kecepatan dirancang = 6 knot. Sesuai dengan besarnya kecepatan perahu 6 knot maka didapat Hambatan Perahu adalah 840,83 Newton (N) serta Besarnya Effektif Horse Power (EHP) perahu tersebut adalah 3,48 Horse Power (HP). Berdasarkan EHP yang didapat maka dapat dicari besarnya Break Horse Power (BHP) perahu tersebut, setelah melalui perhitungan berdasar dari EHP tadi maka didapatkan besarnya BHP mesin adalah  6,931 HP kemudian dicari mesin yang ada dipasaran didapat BHP mesin 7 HP. Besarnya muatan perahu dihitung sesuai displasemen perahu dimana Displasemen = DWT + LWT dimana unsur muatan terdapat pada DWT sehingga setalah melalui perhitungan maka didapat hasil muatan yang bisa diangkut oleh perahu tersebut sebesar 655,5 kg. Stabilitas perahu pada kondisi muatan kosong (Empty Load) sebagaimana maupun pada kondisi muatan penuh (Full Load) menunjukan bahwa stabilitas perahu nelayan tersebut sangat baik artinya apabila perahu oleng atau miring akibat ombak, angin atau muatan maka perahu tersebut dapat kembali keposisi tegak sehingga perahu tidak tenggelam, maka aman digunakan oleh nelayan.
PENGENDALIAN KUALITAS PROSES PRODUKSI KAYU OLAHAN TURNING DENGAN MENGGUNAKAN METODE SEVEN TOOLS DI CV. GAVRA PERKASA Sofinurriyanti, Sofinurriyanti; Maulida, Hikmatul
Bina Teknika Vol 14, No 2 (2018): Bina Teknika
Publisher : Fakultas Teknik UPN "Veteran" Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (349.252 KB)

Abstract

This study aims to determine the quality of products in CV. Cavra Perkasa and to reduce product defects in CV. Garva Perkasa at the time of production. CV. Gavra Perkasa is a company engaged in the industry of building goods made of wood. The products produced are wood flooring, woodwork for building materials (E4E / E2E), handrails, staircases (turning), door frames, and floors with decking. There are seven main quality control tools that can be used as a tool to control quality, among others: check sheet, histogram, control chart, pareto diagram, causal diagram, scatter diagram and various processes. There are three types of damage that occur in turning processed wood products namely Monocular / Perforated, Middle Broken, and Moldy damage. The biggest damage is the edged / perforated damage with a total damage percentage of 47.19%, the disability of wood products in the middle rupture is 30.55% and the lowest value of disability results is 22.24%. So that the total percentage of damage is 13481.
ANALISIS KEBUTUHAN PEMASANGAN ZINK ANODE UNTUK MENCEGAH KOROSI PADA LAMBUNG KAPAL KAPAL GENERAL CARGO Sudjasta, Bambang; Suranto, Purwo Joko; Setiani, Hernia
Bina Teknika Vol 14, No 2 (2018): Bina Teknika
Publisher : Fakultas Teknik UPN "Veteran" Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (487.124 KB)

Abstract

Needs installation of cathodic protection to prevent corrosion of the ship in the sea water medium is a must so that the ships can be used as long as possible, but the effectiveness is very limited lifespan sacrificial anode that time should be right on time. For the replacement timing becomes important to do, hull plate is first exposed areas of sea water. In this area of the hull bottom water or top area of water exposed to corrosion range. Corrosion of hull plates can lead to decline in strength and service life of ships, reducing the ship's speed and reduce safety and security of cargo and passengers. From the calculation of the aluminum anode needs indicated that there is a difference between the life of the anode replacement is supposed to 5.25 years. The number of victims aluminum anode required to ship the object of the research is based on the calculation is 12 pieces (± 44.2 kg), lower than the number of anode installed in the field about 24 pieces (108 Kg). So the amount of victims aluminum anode mounted on General Cargo Ship in the field is redundant with past-year use of 5.25 while the turn is done for 3 years. For the owners of the ship, you should use zinc or magnesium anode victim since both of these materials have an efficiency of 95 % compared to aluminum, is only 50 %.
STUDI PERFORMANSI ECONOMIZER JENIS ALIRAN SILANG UNTUK PROSES DEGREASING DI PT. X PLANT KARAWANG Komarudin, Komarudin; Rahmaputra, Reza
Bina Teknika Vol 14, No 2 (2018): Bina Teknika
Publisher : Fakultas Teknik UPN "Veteran" Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1167.237 KB)

Abstract

Economizer is Heat Exchanger with Crossflow type that have function as reheater the  water to degreasing process. System of Economizer had operated continuously for 7 years. So from this condition Effectiveness and Temperature possibility Can’t achieve the Requirement. Degreasing Process is a part of Painting process in Vehicle manufacturing that have function to degrease the oil, dust and etc.  A decrease in the effectiveness of this, we need recalculation and compare  with design condition to get better effectiveness. Analysis will be refer to fluid flow, overall heat transfer coefficient (U), and Efffectiveness of Economizer it self. Based on result of Calculation and Experiment, the flow of fluid is turbulent flow with Reynold number 12002.14 (Max Condition). Overall heat transfer coefficient (U) is 16.18 W/mK, while the design condition is 48 W/m.K also for Effectiveness is 32.16% and the design condition is 50%. This calculation Proved decreasing of that the performance of economizer. It is caused by scaling of the inner pipe with ratio 2.26%. Scaling will be reduce thermal conductivity of the pipe and also gradient of Temperature.
ANALISIS PERAN MAINTENANCE PADA PROSES CATHODIC ELECTRO DEPOSITION (CED) Maulana, Mahdi; Cholis, Nur
Bina Teknika Vol 14, No 2 (2018): Bina Teknika
Publisher : Fakultas Teknik UPN "Veteran" Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (737.707 KB)

Abstract

Cathodic Electro Deposition atau CED adalah proses pelapisan sebuah objek yang memiliki permukaan konduktif terhadap listrik menggunakan material organik. Permukaan konduktif tersebut dihubungkan dengan arus listrik sebagai katoda, sedangkan pelapisan menggunakan cat bermuatan positif berupa medium air bermuatan listrik. Objek Cathodic Electro Deposition (CED) berupa logam, mudah bermuatan listrik. Material organik yang digunakan terkandung dalam cat atau dapat disertakan melalui tahapan proses. Cathodic Electro Deposition (CED) digunakan pada pelapisan komponen kendaraan. Electro-deposition sebagai cara praktis dalam mengecat telah dikembangkan dalam industri otomotif selama akhir 1950 dan awal 1960 untuk mengecat mobil dan bagian–bagian mobil. Material yang terbawa air yang digunakan dalam sistem awal semua jenis resin anodik berdasarkan exsisting air ditanggung teknologi cat primer. Teknologi ini bukan merupakan hal langka di dunia industri. Kata kunci: Kemajuan teknologi, efisiensi, and Cathodic Electro Deposition (CED)
PERANCANGAN ULANG TURBIN KAPLAN POROS VERTIKAL DI PLTM PLUMBUNGAN Saputra, Rudi; Liichan, Taff
Bina Teknika Vol 14, No 2 (2018): Bina Teknika
Publisher : Fakultas Teknik UPN "Veteran" Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (737.707 KB)

Abstract

Hydroelectric Power Plants (PLTA) in Indonesia have been around since 1926, and are still operating today. The Indonesian government represented by PT. PLN (State Electricity Company) will continue to maintain, operate and maintain old hydropower plants. So far, the development and development of PLTMH in Indonesia still uses consultants / contractors and its manufacturing is from overseas, even components (spare parts) are also still dependent on the technology producers themselves, the majority of which are foreign countries. Imports cannot be avoided, this results in us being vulnerable to several things, fluctuations in foreign exchange rates, and dependence on foreign producers. But with the increasing understanding of national resilience, especially in terms of national industrial independence, several national companies began to carry out reconstruction and fabrication for hydroelectric power plants. This is encouraging the author to learn to know, understand, how to plan the main parts of the Kaplan Turbine which include: runner, shaft, spiral casing, stacker, draft tube. In this plan the author focuses on calculating the main dimensions of the Kaplan Turbine. From the results of the design and calculation, the appropriate type of turbine is Kaplan Turbine as an electric generator drive in Plumbungan PLTM with installed power of 1.2 MW, maximum head of 21.16 meters and water discharge requirement of 7.68 m3 / sec. Plumbungan PLTM installation consists of turbines, turbine supporting equipment, and turbine operation aids. The turbine installation component consists of: suction pipe (penstock), turbine house (spiral casing), runner, runner shaft, shaft support bearing and draft tube.
ANALISIS SIFAT MEKANIK PIPA CARBON STEEL GRADE A A106 DAN GRADE B A53 UNTUK PROSES PRODUKSI PADA KILANG LNG Nofri, Media; Fardiansyah, Arif
Bina Teknika Vol 14, No 2 (2018): Bina Teknika
Publisher : Fakultas Teknik UPN "Veteran" Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (682.092 KB)

Abstract

This study aims to determine the quality and mechanical properties of carbon steel pipes for the production process at a good liquefied Liquified Natural Gas and after 10 years of use. As a temporary repair reference on damaged pipe. The step is to compare the results of testing the mechanical properties and microstructure of both types of pipes. The parameters used are chemical composition, hardness, tensile strength, and micro structure of both types of pipes. Test results on a good pipe have an average hardness value of 90 HV whereas in the damaged pipe the average hardness value of 85.9 HV decreased by 4.1 HV. The tensile test on a good pipe value of 60kg / mm2 (588 MPa), on a damaged tube of tensile strength of 56 kg / mm2 (549 MPa), decreased 4 kg / mm2 (39 MPa). Good pipe microstructure test results consist of ferrite and pearlite structures while in the damaged pipe consisting of pearlite phase. From the results of the study concluded that the pipeline after the use for 10 years experienced a decrease in mechanical properties, namely: hardness and tensile strength. This is the result of thinning of the corrosion pipe wall thickness.
ANALISIS KEGAGALAN PISTON PADA KENDARAAN RODA EMPAT KAPASITAS 1000 CC Zayadi, Ahmad
Bina Teknika Vol 14, No 2 (2018): Bina Teknika
Publisher : Fakultas Teknik UPN "Veteran" Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (380.014 KB)

Abstract

Pistons are one of the main components of a 1000 cc engine that functions as a pressure suppressor and a recipient of pressure combustion in the combustion chamber. In the examination of the 1000 cc sedan engine that has been operating for 30,000 hours found a rough sound on the engine and experienced loss compression on the cylinder block number 2. The purpose of the study was to obtain the factors causing the deformation of the piston 1000 cc sedan vehicles. The research method used is metallographic observation using ASTM E 3 and ASTM E 112, testing hardness using ASTM E 92 and SNI 19-0409-1989 and testing chemical composition using ASTM A 751. The results of research on piston damage can be seen that observation macrostructure proves that there is plastic deformation on the surface area of the piston material, the results of microstructure observation are known to occur microcrack on the top surface of the right side of the piston, there is no change in micro hardness between the piston material in the deformed area with the deformed piston material hardness, piston material made of alloy Al-Si. In the area of the piston surface that experiences deformation, Mg2Si and Mg2Al3 compounds are formed, these compounds which cause microcrack on the piston's upper surface. Plastic deformation on the piston surface occurs due to a collision between the piston surface and the cylinder head due to the buildup of crust on the piston surface.
ANALISIS KEKUATAN VELG ALUMUNIUM MODEL D30D PADA PERUSAHAAN “A” Sumiyanto, Sumiyanto; Abdunnaser, Abdunnaser
Bina Teknika Vol 14, No 2 (2018): Bina Teknika
Publisher : Fakultas Teknik UPN "Veteran" Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1684.152 KB)

Abstract

Wheels are one of the main components in a vehicle. Without wheels of vehicles will not be to function. The damage that occurs in aluminium alloy wheels for the outbreak spoke mostly occur due to a force and tension that occurs exceeds the maximum allowable voltage. With these considerations it is necessary to redesign using 3D software and simulated using finite element method. After simulated, part produce with low pressure casting and machining. Sample part test with several testing as single part such as : life test, drum test, 13° impact test. After that sample part test as running test such as : curb stone evaluation and rectangle evaluation. The results of sample testing parts such as life test, the drum test, 13 ° impact test and running test in the form of curb stone rectangle evaluation and evaluation did not reveal any cracks on the sample part. Nut torque results of sample testing parts such as curb stone evaluation have smaller in 70 N.m, with allowed limit 61,6 N.m until 88 N.m. And nut torque results of sample testing parts such as rectangle evaluation have smaller in 76 N.m, with allowed limit 61,6 N.m until 88 N.m
ANALISIS KEKUATAN DAN KUALITAS SAMBUNGAN LAS DENGAN VARIASI PENDINGINAN OLI DAN UDARA PADA MATERIAL ASTM A36 DENGAN PENGUJIAN NDT (NON DESTRUCTIVE TEST) Faizal, Mohamad; Umam, Syahrul
Bina Teknika Vol 14, No 2 (2018): Bina Teknika
Publisher : Fakultas Teknik UPN "Veteran" Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (432.029 KB)

Abstract

Welding is the process of joining two metals to the point of metal recrystallization using either added or not material and using heat energy as a melting agent. In this study, different cooling variations on each specimen were carried out, the material used was ASTM A36 Plate, 3.2 mm diameter E7018 electrode, cooling used with Oil and Air. in the implementation of welding using the SMAW (Shielded Metal Arc Welding) welding method. From the above understanding, research and testing are carried out including tensile tests, radiography / x-rays, and penetrants. The purpose of this study was to determine the strength and quality of welded joints that were not seen with the Destructive Test on the ASTM A36 plate and also to determine the effect of variations in oil and air cooling. From this study it can be found that the tensile strength values for specimen 1 (Oil ) is 373.06 MPa. While the value of tensile strength for specimen 2 (Air) is 365.31 MPa, this means that it has decreased by 7.75 MPa from the tensile strength of specimen 1 (Oil).

Page 1 of 2 | Total Record : 14