cover
Contact Name
Ivan Ferdian
Contact Email
ivan.ijgbg@gmail.com
Phone
-
Journal Mail Official
ivan.ijgbg@gmail.com
Editorial Address
-
Location
Kota adm. jakarta pusat,
Dki jakarta
INDONESIA
Indonesian Journal on Geoscience
ISSN : 23559314     EISSN : 23559306     DOI : -
Core Subject : Science,
The spirit to improve the journal to be more credible is increasing, and in 2012 it invited earth scientists in East and Southeast Asia as well as some western countries to join the journal for the editor positions in the Indonesia Journal of Geology. This is also to realize our present goal to internationalize the journal, The Indonesian Journal on Geoscience, which is open for papers of geology, geophysics, geochemistry, geodetics, geography, and soil science. This new born journal is expected to be published three times a year. As an international publication, of course it must all be written in an international language, in this case English. This adds difficulties to the effort to obtain good papers in English to publish although the credit points that an author will get are much higher.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue " Vol 6, No 4 (2011)" : 5 Documents clear
Experiment of Industrial Waste Absorption using Activated Carbon from Coal of Tanjung Tabalong, South Kalimantan Gani, M. Ulum; Widodo, Widodo
Indonesian Journal on Geoscience Vol 6, No 4 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1047.147 KB) | DOI: 10.17014/ijog.6.4.239-248

Abstract

DOI: 10.17014/ijog.v6i4.130Activated carbon made from Tanjung Tabalong coal was investigated its absorption capability to organic and inorganic elements in industrial waste. Coal was carbonized at low temperature of 600C to produce semicoke, and then was activated at temperature of 700C with activation time of 120 minutes with water steam flow. The absorption capability of activated carbon to chemical oxygen demand (COD) was performed using 2.5 and 9.0 g activated carbon for 250 ml and 300 ml COD waste respectively. The agitation time of each experiment were 30, 60, and 90 minutes. Atomic absorption spectrophotometer (AAS) was used to analyze the COD waste. The result shows that 2.5 g activated carbon could absorb COD waste ranging from 6.9-67.5 %, while the utilization of 9 g could absorb COD waste ranging from 88.9 - 100 %. The more activated carbon and the longer time of agitation used in this experiment, the more the absorption of COD waste.
Modelling of Magma Density and Viscocity Changes and Their Influences towards the Characteristic of Kelud Volcano Eruption Humaida, Hanik; Brotopuspito, K. S.; Pranowo, H. D.; narsito, narsito
Indonesian Journal on Geoscience Vol 6, No 4 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1673.551 KB) | DOI: 10.17014/ijog.6.4.227-237

Abstract

DOI: 10.17014/ijog.v6i4.129The effusive eruption of Kelud Volcano in 2007 was different from the previous ones, which in general were more explosive. Among others, density and viscosity are factors that determine the type of eruption. Therefore, the study on the difference of the recent eruption style based on the density and viscosity of magma was carried out. The method used in this study was based on geochemical analysis of the rock and then a modeling was established by using the above parameter. The study on the explosive eruption was emphasized on the data of 1990 eruption, whereas the effusive eruption was based on the data of 2007 eruption. The result shows that the magma viscosity of Kelud Volcano depend on the H O concentration as one of the volatile compound in magma, and temperature which gives the exponential equation. The higher the increase of H O content the smaller the value of its viscosity as well as the higher the temperature. The H O content in silica fluid can break the polymer bond of the silica fluid, because a shorter polymer will produce a lower viscosity. The density of the silica content of Kelud Volcano ranges between andesitic and basaltic types, but andesite is more likely. The fluid density of the material of 1990 eruption is different from 2007 eruption. Compared to the 2007, the 1990 eruption material gave a lower density value in its silica fluid than that of the 2007 one. The low density value of the silica fluid of the 1990 eruption material was reflecting a more acid magma. The level of density value of silica fluid depends on its temperature. At the temperature of 1073 K the density of the 1990 Kelud magma is 2810 kg/m3 and the 2007 magma is 2818 kg/m3, whereas at a temperature of 1673 K, the density is 2672 kg/m3 and 2682 kg/m3 of the 1990 and 2007 eruptions respectively. A modeling by using an ideal gas law of Henry’s Law illustrated that the ascent of Kelud’s magma to the surface may cause changes in it’s physical properties. The evolution of the flow pressure in the conduit is characterized by three different areas; based of the conduit until the pressure is saturated, then at the level between release and fragmentation, and then the level above the fragmentation, that implicates the decrease in the wall friction.
Geochemical Evidence of Island-Arc Origin for Sumatra Island; A New Perspective based on Volcanic Rocks in Lampung Province, Indonesia Zulkarnain, Iskandar
Indonesian Journal on Geoscience Vol 6, No 4 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2460.316 KB) | DOI: 10.17014/ijog.6.4.213-225

Abstract

DOI: 10.17014/ijog.v6i4.128Since decades, Sumatra Island is considered as the Eurasia continental margin where the Indian Ocean plate has been subducted oblique beneath the continental plate of Sumatra. But, the occurrences of volcanic rocks in almost all areas of Lampung Province in the southernmost of Sumatra Island, as the presence of the Quaternary Tanggamus Volcano in the western part of the province together with the Quaternary Rajabasa Volcano in the eastern area cannot be justified using the consideration. Spider diagrams of trace and rare earth elements of volcanic rocks from the western and eastern areas of the province reveal that the rocks come from three different tectonic settings, namely island-arc, active continental margin (ACM), and intra continental plate. All basalt and one dacite of western volcanic rocks show a character of island-arc origin, while the eastern volcanic rocks are reflecting characters of ACM and intra continental plate. Plot of the rocks in the diagram of Ta/Yb versus Ce/P and in Ta/Yb versus Th/Yb confirmed the tectonic environments and specifically classify the intra continental plate into Within Plate Volcanic Zone (WPVZ). The island-arc group is characterized by Ta/Yb ratio of less than 2.0 and Ce/P less than 1.8. The ACM group is recognized having Ta/Yb ratio between 2 and 4 with Ce/P more 1.8, while the WPVZ group is defined as a group having Ta/Yb more than 6 and Ce/P more than 1.0. The result indicates that the western part of Sumatra is an island-arc fragment and the eastern part belongs to the Eurasia continental margin. The concentration of volcanics having ACM character from areas around the Sumatra Fault System to the east indicates that the collision zone between the Sumatra island-arc fragments with the Eurasia continental margin is probably located along the SFS. More statistical data is still needed from other Sumatra volcanics to confirm this conclusion.
Regression-Correlation of Petrophysical Inter-Parameter of Igneous Rocks and Limestone from Kulonprogo Mountain Region, Yogyakarta Special Region Maryanto, Sigit; Hasan, R.
Indonesian Journal on Geoscience Vol 6, No 4 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1251.641 KB) | DOI: 10.17014/ijog.6.4.203-211

Abstract

DOI: 10.17014/ijog.v6i4.127Laboratory test of complete petrophysic parameters encompasing water absorption, compressive strength, Los Angeles abrasive strength, Rudellof abrasive strength, and wear resistance with Na2SO4 has been carried out for igneous and carbonate rocks taken from Kulonprogo Mountains region. Statistical verification of the data exhibits variation of correlation coefficients among parameters ranging from medium to very high value. The values of petrophysic test results are determined by the rock types. The result of this study is useful to estimate the accuracy of values of each parameter test result in Geological Survey Institute Laboratory using regression formula representing each relationship.
Geology and Characteristics of Pb-Zn-Cu-Ag Skarn Deposit at Ruwai, Lamandau Regency, Central Kalimantan Idrus, Arifudin; Setijadji, L. D.; Thamba, F.
Indonesian Journal on Geoscience Vol 6, No 4 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (658.914 KB) | DOI: 10.17014/ijog.6.4.191-201

Abstract

DOI: 10.17014/ijog.v6i4.126This study is dealing with geology and characteristics of mineralogy, geochemistry, and physicochemical conditions of hydrothermal fluid responsible for the formation of skarn Pb-Zn-Cu-Ag deposit at Ruwai, Lamandau Regency, Central Kalimantan. The formation of Ruwai skarn is genetically associated with calcareous rocks consisting of limestone and siltstone (derived from marl?) controlled by NNE-SSW-trending strike slip faults. It is localized along N 70° E-trending thrust fault, which also acts as the contact zone between sedimentary and volcanic rocks in the area. The Ruwai skarn is mineralogically characterized by prograde alteration comprising garnet (andradite) and clino-pyroxene (wollastonite), and retrograde alteration composed of epidote, chlorite, calcite, and sericite. Ore mineralization is typified by sphalerite, galena, and chalcopyrite, formed at early retrograde stage. Galena is typically enriched in silver up to 0.45 wt % and bismuth of about 1 wt %. No Ag-sulphides are identified within the ore body. Geochemically, SiO is enriched and CaO is depleted in limestone, consistent with silicic alteration (quartz and calc-silicate) and decarbonatization of the wallrock. The measured resources of the deposit are 2,297,185 tonnes at average grades of 14.98 % Zn, 6.44% Pb, 2.49 % Cu, and 370.87 g/t Ag. Ruwai skarn orebody was originated at moderate temperatures of 250 - 266 °C and low salinity of 0.3 - 0.5 wt.% NaCl eq. The late retrograde stage was formed at low temperature of 190 - 220 °C and low salinity of ~0.35 wt.% NaCl eq., which was influenced by meteoric water incursion at the late stage of the Ruwai Pb-Zn-Cu-Ag skarn formation.

Page 1 of 1 | Total Record : 5


Filter by Year

2011 2011


Filter By Issues
All Issue Vol 6, No 3 (2019) Vol 6, No 2 (2019) Vol 6, No 1 (2019) Vol 6, No 2 (2019): in-press Vol 6, No 1 (2019) Vol 5, No 3 (2018) Vol 5, No 2 (2018) Vol 5, No 1 (2018) Vol 5, No 3 (2018) Vol 5, No 2 (2018) Vol 5, No 1 (2018) Vol 4, No 3 (2017) Vol 4, No 2 (2017) Vol 4, No 1 (2017) Vol 4, No 3 (2017) Vol 4, No 2 (2017) Vol 4, No 1 (2017) Vol 3, No 3 (2016) Vol 3, No 2 (2016) Vol 3, No 1 (2016) Vol 3, No 3 (2016) Vol 3, No 2 (2016) Vol 3, No 1 (2016) Vol 2, No 3 (2015) Vol 2, No 2 (2015) Vol 2, No 1 (2015) Vol 2, No 3 (2015) Vol 2, No 2 (2015) Vol 2, No 1 (2015) Vol 1, No 3 (2014) Vol 1, No 2 (2014) Vol 1, No 1 (2014) Vol 1, No 3 (2014) Vol 1, No 2 (2014) Vol 1, No 1 (2014) Vol 8, No 4 (2013) Vol 8, No 3 (2013) Vol 8, No 2 (2013) Vol 8, No 1 (2013) Vol 8, No 4 (2013) Vol 8, No 3 (2013) Vol 8, No 2 (2013) Vol 8, No 1 (2013) Vol 7, No 4 (2012) Vol 7, No 3 (2012) Vol 7, No 2 (2012) Vol 7, No 1 (2012) Vol 7, No 4 (2012) Vol 7, No 3 (2012) Vol 7, No 2 (2012) Vol 7, No 1 (2012) Vol 6, No 4 (2011) Vol 6, No 3 (2011) Vol 6, No 2 (2011) Vol 6, No 1 (2011) Vol 6, No 4 (2011) Vol 6, No 3 (2011) Vol 6, No 2 (2011) Vol 6, No 1 (2011) Vol 5, No 4 (2010) Vol 5, No 3 (2010) Vol 5, No 2 (2010) Vol 5, No 1 (2010) Vol 5, No 4 (2010) Vol 5, No 3 (2010) Vol 5, No 2 (2010) Vol 5, No 1 (2010) Vol 4, No 4 (2009) Vol 4, No 3 (2009) Vol 4, No 2 (2009) Vol 4, No 1 (2009) Vol 4, No 4 (2009) Vol 4, No 3 (2009) Vol 4, No 2 (2009) Vol 4, No 1 (2009) Vol 3, No 4 (2008) Vol 3, No 3 (2008) Vol 3, No 2 (2008) Vol 3, No 1 (2008) Vol 3, No 4 (2008) Vol 3, No 3 (2008) Vol 3, No 2 (2008) Vol 3, No 1 (2008) Vol 2, No 4 (2007) Vol 2, No 3 (2007) Vol 2, No 2 (2007) Vol 2, No 1 (2007) Vol 2, No 4 (2007) Vol 2, No 3 (2007) Vol 2, No 2 (2007) Vol 2, No 1 (2007) Vol 1, No 4 (2006) Vol 1, No 3 (2006) Vol 1, No 2 (2006) Vol 1, No 1 (2006) Vol 1, No 4 (2006) Vol 1, No 3 (2006) Vol 1, No 2 (2006) Vol 1, No 1 (2006) More Issue