cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta timur,
Dki jakarta
INDONESIA
International Journal of Remote Sensing and Earth Sciences (IJReSES)
ISSN : 02166739     EISSN : 2549516X     DOI : -
Core Subject : Science,
International Journal of Remote Sensing and Earth Sciences (IJReSES) is expected to enrich the serial publications on earth sciences, in general, and remote sensing in particular, not only in Indonesia and Asian countries, but also worldwide. This journal is intended, among others, to complement information on Remote Sensing and Earth Sciences, and also encourage young scientists in Indonesia and Asian countries to contribute their research results. This journal published by LAPAN.
Arjuna Subject : -
Articles 10 Documents
Search results for , issue " Vol 11, No 2 (2014)" : 10 Documents clear
EVALUATION OF SPOT-5 IMAGE FUSION USING MODIFIED PAN-SHARPENING METHODS Siwi, Sukentyas Estuti
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1124.613 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2609

Abstract

Image fusion, commonly known as pan-sharpening, is a method that combines two data: a panchromatic image that has geometric detail information with the highest spatial resolution and multi-spectral image that has the highest color information but with the lowest resolution. Pan-sharpeningis very important for various remote sensing applications, such as to improve the image classification, to change the detection using temporal data, to increase the geometric, image segmentation, and to improve the visibility of certain object that does not appear on certain data. This study aims to compare the existing pan-sharpening methods such as Brovey, Brovey modification using green and red band, Gram-Schmidt, HPF, Multiplicative, and SFIM.The quality of the pan-sharpening result should be evaluated, this study used Universal Image Quality Index (UIQI/Q index); this evaluation methodgives the opportunity to choose which method is best to provide the most similar spectral information with the original multispectral image. A pan-sharpening qualitative analysis shows that there has been a sharpening process on all pan-sharpening images. Based on spectral visualization (color display), several pan-sharpening methods such as HPF multiplicative method provides brighter colorsand Brovey transformation method displays dark colors. Gram-Schmidt method also provides a different color from the original multispectral image. A pan-sharpening quantitative analysis shows that the best pan-sharpening method with UIQI value> 0.9 is Brovey modification using green and red band. This is due to the green band (500-590 nm) and the red band(610-680 nm) wavelength are in the panchromatic band (480-710 nm) of the SPOT-5 Data. 
A TWO-STEPS RADIOMETRIC CORRECTION OF SPOT-4 MULTISPECTRAL AND MULTITEMPORAL FOR SEAMLESS MOSAIC IN CENTRAL KALIMANTAN Kustiyo, .; Dewanti, Ratih; Sari, Inggit Lolita
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (996.393 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2607

Abstract

This research analyzed the radiometric correction method using SPOT-4 imageries to produce the same reflectance for the same land cover. Top of Atmosphere (TOA) method was applied in previous radiometric correction approach, this TOA approach was upgraded with the reflectance effect from difference satellite viewing angle. The 250 scene of Central Kalimantan SPOT-4 imageries from 2006 until 2012 with varies viewing angle was used. This research applied two-step approaches, the first step is TOA correction, and the second step is normalization using a linear function of reflectance and satellite viewing angle. Gain and offset coefficient of this linear function was calculated using an iterative approach to producing the same reflectance in the forest area. The target of iterative processed is to minimize the standard deviation of a digital number from a forest area in the selected region. The result shows that the standard deviation of a digital number from a forest area in the two steps approach are 8.6, 16.5, and 16.8 for band 1, band 3 and band 4. These values are smaller compared with the standard deviation of digital number result from TOA approach are 15.0, 28,3 and 34.7 for band 1, band 3 and band 4.  Decreasing the standard deviation shows the homogeneity of forest reflectance that could be seen in the seamless result. This algorithm can be applied for making seamless SPOT-4 mosaic whole of Indonesia.
ANALYSIS OF SAR MAIN PARAMETERS FOR SAR SENSOR DESIGN ON LSA Soleh, Muchammad; Arief, Rahmat
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1124.17 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2606

Abstract

LAPAN plans to conduct a flight test of LSA (LAPAN Surveillance Aircraft). LSA STEMME-S15 is capable of carrying sensor payloads up to 160 kg that are mounted on both sides of the wings with altitude between 400-2000 m. LSA can be designed to perform imaging by using optical sensors and SAR (Synthetic Aperture Radar). Compared to imaging using optical sensors, SAR sensor has advantages such as it can operate all day and night, able to penetrate clouds, and able to see objects from side looking, while optical sensors generally see the object perpendicular to the ground. Therefore the use of SAR imaging technology can complement optical imaging technology. To design SAR system imagers on LSA, it is necessary to simulate the primary parameters SAR i.e. altitude and look angle of sensor, speed of LSA, SAR frequency and signals power shot to object to calculate the resolution of azimuth and ground range values that can be obtained. This SAR parameters simulation used MATLAB which have been designed with two approaches; the first approach where the SAR sensor is ideal and in which all the fundamental parameters (such as polarization, frequency, etc.) are used to generate the desired sensitivity and resolution of azimuth and ground range, and the second approach is where SAR sensor is designed in a limited antenna size (constraint case), with the assumption that the dimensions of the antenna and the average available power are fixed. The data used in this simulation is a pseudo-data obtained from LSA technical spesification and SAR sensor. The simulation results with the first approach shows that if LSA is flying at an altitude of 1000 m, with speed of 36.11 m/s, and SAR frequency of 5.3 GHz, then to get resolution of azimuth, slant range and ground range of 1 m, 1.2 m and 3 m, it is necessary to design the length and width of SAR antenna at 2 m and 13.5 cm, with look angle of 23.5 degrees. While the result of second approach simulation is that if LSA is flying on the same altitude and speed, on the same look angle and SAR frequency, with a particular design of antenna length and width of 2 m and 13.5 cm, then azimuth, slant range and ground range resolution of 1 m, 1.87 and 4.79 m will be obtained. Form both simulations, it can be concluded that limited SAR system on LSA, especially on the technical aspects of mounting and space as in the simulation with the second approach, will produce slightly lower slant range and ground range resolution when compared with SAR system in the first simulation. This shows that space limitation on LSA will affect decrease the value of spatial ground range resolution. The simulation results are expected to be inputs on designing SAR imaging system on LSA.
Back Pages IJReSES Vol. 11, No. 2(2014) Secretariat, Editorial
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (3469.646 KB)

Abstract

Back Pages IJReSES Vol. 11, No. 2(2014)
THE USE OF HIGH RESOLUTION IMAGES TO EVALUATE THE EVENT OF FLOODS AND TO ANALYSIS THE RISK REDUCTION CASE STUDY: KAMPUNG PULO, JAKARTA Khomarudin, M. Rokhis; Suwarsono, .; Ambarwati, Dini Oktavia; Prabowo, Gunawan
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1399.039 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2610

Abstract

The flood hit Kampung Pulo region in almost every year. This disaster has caused the evacuation of some residents in weeks. Given the frequency of occurrence is quite high in the region it is necessary to do a study to support disaster risk reduction. This study aimed to evaluate the incidence of flooding that occurred in Kampung Pulo in terms of topography, river conditions, characteristics of the building, and socioeconomic conditions. Methods of study include geomorphology analysis, identification of areas of stagnant, the estimated number of people exposed, the estimation of socio-economic conditions of the population, as well as determining the location of an evacuation. The data used is high-resolution remote sensing imagery is QuickBird and SPOT-6. It also used the results of aerial photography using Unmanned Aerial Vehicle (UAV). Aerial photography was conducted on January 18, 2013, which is when the serious flooding that inundated almost the entire region of Kampung Pulo. Information risk level of buildings and population resulting from this study were obtained by using GIS. The results obtained from this study can be used to develop recommendations and strategies for flood mitigation in Kampung Pulo, Jakarta. One of them is the determination of the location for vertical evacuation plan in the affected areas.
Front Pages IJReSES Vol. 11, No. 2(2014) Secretariat, Editorial
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (3659.292 KB)

Abstract

Front Pages IJReSES Vol. 11, No. 2(2014)
AN EFFECTIVE INFORMATION SYSTEM OF DROUGHT IMPACT ON RICE PRODUCTION BASED ON REMOTE SENSING Shofiyati, Rizatus; Takeuchi, Wataru; Darmawan, Soni; Sofan, Parwati
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1667.47 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2613

Abstract

Long droughts experienced in the past are identified as one of the main factors in the failure of rice production. In this regard, special attention to monitor the condition is encouraged to reduce the damage. Currently, various satellite data and approaches can withdraw valuable information for monitoring and anticipating drought hazards. MODIS, MTSAT, AMSR-E, TRMM and GSMaP have been used in this activity. Meteorological drought index (SPI) of the daily and monthly rainfall data from TRMM and GSMaP have analyzed for last 10-year period. While, agronomic drought index has been studied by observing the character of some indices (EVI, VCI, VHI, LST, and NDVI) of sixteen-day and monthly MODIS, MTSAT, and AMSR-E data at a period of 4 years. Network for satellite data transfer has been built between LAPAN (data provider), ICALRD (implementer), IAARD Cloud Computing, University of Tokyo (technical supporter), and NASA. Two information system have been developed: 1) agricultural drought using the model developed by LAPAN, and 2) meteorological drought developed by Takeuchi (University of Tokyo).The accuracy study using quantitative method for LAPAN model uses VHI is 60% (Kappa 0,44), while that of for University of Tokyo model uses qualitative model with KBDI value 500-600 shows an early indication of  drought for paddy field. This will help the government or field officers in rapid management actions for the indicated drought area.This paper describes the implementation and dissemination of drought impact monitoring model on the area of rice production center using an integrated information system satellite based model. The two developed information systems are effective for spatially dissemination of drought information.
EVALUATION OF MANGROVE DAMAGE LEVEL BASED ON LANDSAT 8 IMAGE Winarso, Gathot; Purwanto, Anang D.
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1714.838 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2608

Abstract

Monitoring of mangrove damage in Java requires special attention because the mangrove vegetation has been under pressure from various other land uses which are considered more productive. This paper applied quick-mangrove-damage-detection technique using Landsat 8. The purpose of this study is to develop mangrove damage identification algorithm using Landsat 8. The findings from field survey in Segara Anakan-Cilacap show that major mangrove logging generates the growth of minor mangrove, specifically Derris and Acanthus type; the minor mangrove cover area is categorized as high density based on NDVI value. The index use does not meet the actual condition in the field. This study proposes a new index as mangrove quality indicator. The new proposed mangrove index is derived from 2 bands that could differentiate mangrove vegetation where different digital number of two bands is higher from mangrove forest than non-mangrove forest. That phenomenon is caused the low of SWIR spectral on mangrove forest due to absorption by wet soil below the mangrove forest where flooded in high tide.  The new mangrove index is formulated as (NIR – SWIR / NIR x SWIR) x 10000. The new mangrove index has good correlation with density of major mangrove in the field, and also good correlation with mangrove degradation map. Mangrove index has been functioning properly and can be applied in Segara Anakan, Cilacap and potentially can be applied in other locations.
ANALYSIS OF SEA SURFACE HEIGHT ANOMALY CHARACTERISTICS BASED ON SATELLITE ALTIMETRY DATA (CASE STUDY: SEAS SURROUNDING JAVA ISLAND) Marpaung, Sartono; Harsanugraha, Wawan K.
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1367.718 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2611

Abstract

Sea surface height anomaly is a oceanographic parameter that has spatial and temporal variability. This paper aims to determine the characters of sea surface height anomaly in the south and north seas of Java Island. To find these characters, a descriptive analysis of monthly anomaly data is performed spatially, zonally and temporally. Based on satellite altimetry data from 1993 to 2010, the analysis shows that the average of sea surface height anomaly varies, ranging from -15 cm to 15 cm. Spatially and zonally, there are three patterns that can be concidered as sea surface height anomaly characteristics: anomaly is higher in coastal areas than in open seas, anomaly is lower in coastal areas than in open seas and anomaly in coastal area is almost the same as in open seas. The first and second patterns occur in the south and north seas of Java Island. The third pattern occurs simultaneously in south and north seas of Java Island. Characteristics of temporal anomaly have a sinusoidal pattern in south and north seas of Java Island.
UTILIZATION OF SAR AND EARTH GRAVITY DATA FOR SUB BITUMINOUS COAL DETECTION Julzarika, Atriyon; Setiawan, Kuncoro Teguh
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1297.886 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2612

Abstract

Remote sensing data can be used for geological and mining applications, such as coal detection. Coal consists of five classes of Anthracite, Bituminous, Sub-Bituminous, Lignite coal and Peat coal. In this study, the type of coal that is discussed is Sub bituminous, Lignite coal, and peat coal. This study aims to detect potential sub bituminous using Synthetic Aperture Radar (SAR) data, and earth gravity. One type of remote sensing data to detect potential sub bituminous, lignite coal and peat coal are SAR data and satellite data Geodesy. SAR data used in this study is ALOS PALSAR. SAR data is used to predict the boundary between Lignite coal with Peat coal. The method used is backscattering. In addition to the SAR data is also used to make height model. The method used is interferometry. Geodetic satellite data is used to extract the value of the earth gravity and geodynamics. The method used is physical geodesy. Potential sub-bituminous coal can be known after the correlation between the predicted limits lignite coal-peat coal by the earth gravity, geodynamics, and height model. Volume predictions of potential sub bituminous can be known by calculating the volume using height model and transverse profile test. The results of this study useful for preliminary survey of geological in mining exploration activities.

Page 1 of 1 | Total Record : 10