cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota medan,
Sumatera utara
INDONESIA
JOURNAL OF MECHANICAL ENGINEERING, MANUFACTURES, MATERIALS AND ENERGY
Published by Universitas Medan Area
ISSN : 25496220     EISSN : 25496239     DOI : -
This journal is a publication media of research results in the field of machinery that has been carried out by academics or practitioners by following predetermined rules. The research areas include: manufacturing, engineering materials, energy conversion and renewable energy, as well as other machinery fields, such as: mechatronics, hydraulics, plantation tools, and engine maintenance management systems. Each paper that has been sent will be reviewed by a team of experts in their field, and published online through the http://ojs.uma.ac.id/index.php/jmemme url address. This journal was founded in 2017 and has been registered with a print version of ISSN 2549-6220 and the online version of ISSN 2549-6239.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue " Vol 2, No 1 (2018): EDISI JUNI" : 6 Documents clear
Analisis Reliability Centered Maintenance (RCM) Rel Conveyor pada Mesin Oven BTU Pyramax 150N di PT. Flextronics Teknology Indonesia - Batam Sariyusda, Sariyusda
JOURNAL OF MECHANICAL ENGINEERING, MANUFACTURES, MATERIALS AND ENERGY Vol 2, No 1 (2018): EDISI JUNI
Publisher : JOURNAL OF MECHANICAL ENGINEERING, MANUFACTURES, MATERIALS AND ENERGY

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Reliability Centered Maintenance (RCM) atau lebih dikenal dengan the expert system of maintenance merupakan suatu metode desain sistem manajemen perawatan yang mampu memberikan jaminan ketersediaan, keselamatan, lingkungan serta desain sistem applicable dan komprehensif. Rel conveyor oven Btu Pyramax 150N adalah salah satu bagian yang sangat berpengaruh pada proses manufacturing sebuah PCB (Papan Circuit board) pada PT.Flextronics Teknology Indonesia – Batam  (Indonesia). Tujuan yang ingin dicapai ialah melakukan perancangan sistem manajemen perawatan berdasarkan RCM untuk menghindari terjadinya kegagalan (failure) peralatan mesin pada saat operasi yang menyebabkan terganggunya produksi dapat dihindari. Metode yang dilakukan pada penelitian ini mengunakan metode FMEA (Failure Mode and effect analysis) dan penelitian dapat tiga peralatan kritis yaitu rantai conveyor, jaring baja dan alur poros melintang.
Study on the CBN Tool Wear Mechanism on Dry High-Rate Turning Process for AISI 4140 Harto, Budi; Umroh, Bobby; Darianto, Darianto
JOURNAL OF MECHANICAL ENGINEERING, MANUFACTURES, MATERIALS AND ENERGY Vol 2, No 1 (2018): EDISI JUNI
Publisher : JOURNAL OF MECHANICAL ENGINEERING, MANUFACTURES, MATERIALS AND ENERGY

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study aims to investigate tools wear and wear mechanisms when machining high-rate extreme minimum lathe AISI 4140 material in hard and dry cutting conditions. Cutting tool made from CBN CB7015 Sandvik Coromant production is used for turning of AISI 4140 steel in order to obtain the failure mode of tool and the wear mechanism of the cutting tool. The machining process is carried out under dry cutting conditions with variations of high velocity Vc, feeding rate f, and a cutting depth a at minimum rate conditions. The wear growth curve obtained shows that the CBN tool undergoes three phases: the initial phase, the gradual phase, and the abrupt phase. From the results of the study found that the failure modes that occur are flank wear, crater wear, flaking, chipping, and fracturing catastrophic failure. The wear mechanism that occurs in outline is caused by abrasive, adhesive, and diffusion processes. While the cracks and fractures that occur due to a combination of impact load and thermal shock
Numerical Study on Plate Holders Pipe Recovery Boiler Superheater Amrinsyah, Amrinsyah; syam, amir; Darianto, Darianto; zulfikar, zulfikar
JOURNAL OF MECHANICAL ENGINEERING, MANUFACTURES, MATERIALS AND ENERGY Vol 2, No 1 (2018): EDISI JUNI
Publisher : JOURNAL OF MECHANICAL ENGINEERING, MANUFACTURES, MATERIALS AND ENERGY

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The important part which has a function as supporting of superheater header on the boiler recovery type (RB) is a couple of support plate which is hanged on the hanger rod. This part is very difficult to analyze by experimental because there are in a tight insulation and heavy duty condition. This research aim to obtain the stress distribution that happened on the plate as the effect of static load in simulation mode. The model is designed base on the dimension of real support plate size 400x200 mm and thickness 15 mm. It is use the FEM software of Ansys version 5.4. The theory of failure analysis of Tresca and von Mises become the reference for materials strength. The area contact theory of b represents the reference to determine the length of stress area along curve of both contact area. The material that is used is from steel ASTM A514 with the yield strength 690 MPa. The Result is stress distribution along curve and also critical point which has possibility failure occurs on the support plate. The analysis result could be a reference for the development of the further construction.
NUMERICAL ANALYSIS OF STRENGTH OF REAR BRAKE HOLDER FLAT ON THE MOTOR CYCLE DUE TO IMPACT LOAD Zulfikar, Zulfikar; Umroh, Bobby; Amrinsyah, Amrinsyah; Kurniawan, Fadly A
JOURNAL OF MECHANICAL ENGINEERING, MANUFACTURES, MATERIALS AND ENERGY Vol 2, No 1 (2018): EDISI JUNI
Publisher : JOURNAL OF MECHANICAL ENGINEERING, MANUFACTURES, MATERIALS AND ENERGY

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Brake is one of vital motorcycle element, which serves as a speed reduction mechanism. This section reinforced with retaining plate which serves to hold the wheels when braking process occurs. Research on the plate strength is still rarely found. Stress distribution that occurs on the plate due to shock loads is also not well known. Therefore, this study aims to obtain the strength retaining plate with a numerical analysis of the distribution of stress and deformation which occur on plate. Research done in two ways, experimentally and numerical simulations. Experimentally, direct measurements on the amount of stress that occurs on the plate. The research was done by putting strain gage on the connection plate and brake. In simulation, using Nastran software with the primary data based on the results of the experimental measurements. Based on the results of the numerical analysis of the stress distribution that occurs is obtained that the maximum stress distributed around the staging area in direct contact with the brake. Therefore, motorists should be aware that section and provide additional anchoring structure to further strengthen the structure of the retaining plate rear brake.
Heat Transfer Simulation on the Wall of Rotary Cast Iron Smelting Furnace Capacity of 1 ton/hour Syam, Amir; zulfikar, zulfikar; Hutasuhut, Muhammad Idris
JOURNAL OF MECHANICAL ENGINEERING, MANUFACTURES, MATERIALS AND ENERGY Vol 2, No 1 (2018): EDISI JUNI
Publisher : JOURNAL OF MECHANICAL ENGINEERING, MANUFACTURES, MATERIALS AND ENERGY

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The rotary smelting furnace is a cast iron smelting furnace with the working principle of raw material rotated in a melting drum. The difficulty of this type of furnace is if the furnace wall is damaged, it will be very difficult to determine the appropriate conduction coefficient material as a replacement material. Numerical simulations are required to obtain the heat transfer information that occurs on the furnace wall. This analysis aims to (1) obtain the temperature distribution occurring in the furnace wall, and (2) obtain the heat transfer coefficient on the wall surface on the inside, center, and outside of the melting furnace. Calculation of numerical simulation in this research is assisted by using Ansys software. The theoretical basis of numerical heat transfer simulation analysis can be determined by using the conduction temperature equation in each node. The load conditions in this case are assumed as thermal loads. The result obtained temperature distribution on the inner wall is 1590 oC, middle 1470 oC, and outside 1104 oC.
Numerical Simulation on Mechanical Strength of a Wooden Golf Stick Darianto, Darianto; Umroh, Bobby; Amrinsyah, Amrinsyah; zulfikar, zulfikar
JOURNAL OF MECHANICAL ENGINEERING, MANUFACTURES, MATERIALS AND ENERGY Vol 2, No 1 (2018): EDISI JUNI
Publisher : JOURNAL OF MECHANICAL ENGINEERING, MANUFACTURES, MATERIALS AND ENERGY

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In general, golf players only know the techniques used in Golf games, but do not know the golf sticks response that occurs when the ball is hit. Referred to as response is the stress and strain that arises from the impact load that occurs when the hitting member touches the ball. The objectives of this research are: (a) to analyze golf sticks response when impact occurs, and (2) to know the stress distribution that occurs in golf sticks. The golf stick design in this study uses the autodesk inventor software. The material used is Titanium for head stick and Graphite for stick rod. The basic principle of this study is based on simple swing pendulum method. The variables that will be used for simulation are: swing speed, that is difference between start and end speed, that is Δv = 272,2 m / s, impact time, which is the time when the ball touches the batter Δt = 0.0005 seconds, the volume of the head of the stick Vo = 96,727 mm3, the cross-sectional area of the stick A = 63,504 mm2, the head mass of the sticks ρ = 4620 kg / m3, and the modulus of titanium elasticity 9.6 e +10 Pa. From the simulation result on the surface of the golf club hitter is obtained as follows: σmax = 2.1231e +10 Pa at 1.231e-06 s, emax = 0.22115 m / m at 1.231e-06 s, and the maximum stress and strain is located in the area the connection between the stick and the head of the stick.

Page 1 of 1 | Total Record : 6