Jurnal Sisfokom (Sistem Informasi dan Komputer)
Vol 8, No 1 (2019): MARET

KLASIFIKASI JENIS BUAH APEL DENGAN METODE K-NEAREST NEIGHBORS DENGAN EKSTRAKSI FITUR HSV DAN LBP

Wijaya, Novan (Unknown)
Ridwan, Anugrah (Unknown)



Article Info

Publish Date
08 Apr 2019

Abstract

Abstrak Apel merupakan salah satu jenis buah yang unggul dan sangat digemari dan dikonsumsi masyarakat. Buah apel memiliki banyak varietas yang dapat dibedakan berdasarkan warna dan bentuk buah. Fitur Hue Saturation Value (HSV) dan Local Binary Patern (LBP) digunakan pada penelitian ini sebagai ekstraksi fitur warna dan bentuk pada buah yang kemudian akan dijadikan ciri dari warna dan bentuk buah apel yang akan diteliti. Metode K-Nearest Neighbor (K-NN) adalah salah satu metode penelitian pada kecerdasan buatan yang digunakan dalam penelitian ini untuk mengklasifikasikan nilai-nilai yang didapat dari hasil ekstraksi fitur HSV dan LBP. Data yang digunakan pada penelittian ini adalah 800 citra, yang terdiri dari 600 citra latih dan 200 citra uji. Hasil evaluasi yang didapat dari metode K-Nearest Neighbor ini untuk Secara keseluruhan dapat dilihat bahwa rata-rata nilai Precision yang di dapat sebesar 94%, Recall sebesar 100%, dan Accuracy sebesar 94 %.Kata kunci: Hue Saturation Value, Local Binary Patern, K-Nearest Neighbor  

Copyrights © 2019






Journal Info

Abbrev

sisfokom

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

Jurnal Sisfokom merupakan singkatan dari Jurnal Sistem Informasi dan Komputer. Jurnal ini merupakan kolaborasi antara sivitas akademika STMIK Atma Luhur dengan perguruan tinggi maupun universitas di Indonesia. Jurnal ini berisi artikel ilmiah dari peneliti, akademisi, serta para pemerhati TI. Jurnal ...