Indonesian Journal of Agricultural Science
Vol 13, No 1 (2012): April 2012


Wihardjaka, A. ( Indonesian Agricultural Environment Research Institute ) , Tandjung, S. Djalal ( Faculty of Biology, Gadjah Mada University ) , Sunarminto, B. Hendro ( Faculty of Agriculture,Gadjah Mada University ) , Sugiharto, Eko ( Faculty of Mathematic and Natural Science, Gadjah Mada University )

Article Info

Publish Date
24 Apr 2013


Incorporation of rice straw into soil is a common practice to improve soil productivity and increase inorganic fertilizer availability. However, this practice could contribute to methane (CH4) emission; one of the greenhouse gases that causes global warming. Nitrification inhibitors such as neem cake and carbofuran may reduce methane emission following application of rice straw. The study aimed to evaluate the application of rice straw and nitrification inhibitor to methane emission in rainfed lowland rice system. A factorial randomized block design was used with three replications. The first factor was rice straw incorporation (5 t ha-1 fresh straw, 5 t ha-1 composted straw), and the second factor was nitrification inhibitor application (20 kg ha-1 neem cake, 20 kg ha-1 carbofuran). The experiment was conducted at rainfed lowland in Pati, Central Java, during 2009/2010 wet season. Ciherang variety was planted as direct seeded rice with spacing of 20 cm x 20 cm in each plot of 4 m x 5 m. The rice straw was treated together with soil tillage, whereas nitrification inhibitor was applied together with urea application. Parameters observed were methane flux, plant height, plant biomass, grain yield, organic C content, and bacterial population in soil. The methane flux and soil organic C were measured at 25, 45, 60, 75, and 95 days after emergence. The results showed that composted rice straw incorporation significantly emitted methane lower (73.2 ± 6.6 kg CH4 ha-1 season-1) compared to the fresh rice straw (93.5 ± 4.0 CH4 ha-1 season-1). Application of nitrification inhibitors neem cake and carbofuran reduced methane emission as much as 20.7 and 15.4 kg CH4 ha-1 season-1, respectively. Under direct seeded rice system, methane flux level correlated with plant biomass as shown by linear regression of Y = 0.0015 X + 0.0575 (R2 = 0.2305, n = 27). This means that higher plant biomass produced more methane flux. The study indicates that application of nitrification inhibitors such as neem cake is prospective in decreasing methane emission from direct seeded rice cropping. 

Copyrights © 2013

Original Source :
Google Scholar : Check in googleschoolar

Journal Info





Agriculture, Biological Sciences & Forestry


The journal publishes primary research articles from any source if they make a significant original contribution to the experimental or theoretical understanding of some aspect of agricultural science in Indonesia. The definition of agricultural science is kept as wide as possible to allow the ...