This Author published in this journals
All Journal BERKALA SAINSTEK
Articles

Found 1 Documents
Search

Implementasi Metode Backpropagation Neural Network (BNN) dalam Sistem Klasifikasi Ketepatan Waktu Kelulusan Mahasiswa (Studi Kasus: Program Studi Sistem Informasi Universitas Jember) Hizham, Fadhel Akhmad; Nurdiansyah, Yanuar; Firmansyah, Diksy Media
BERKALA SAINSTEK Vol 6 No 2 (2018)
Publisher : Universitas Jember

Show Abstract | Original Source | Check in Google Scholar | Full PDF (679.778 KB)

Abstract

Program Studi Sistem Informasi adalah salah satu program studi di Universitas Jember yang berdiri sejak tahun 2009. Sampai saat ini sudah cukup banyak mahasiswa yang telah menyandang gelar sarjana, khususnya angkatan 2009-2013 , namun tidak banyak yang berhasil menyelesaikan studinya tepat waktu sehingga berdampak pada penilaian akreditasi dari program studi tersebut. Mahasiswa memiliki beban pembelajaran sekurang-kurangnya 144 SKS dengan masa studi selama 4- 5 tahun untuk memperoleh gelar sarjana. Berdasarkan permasalahan tersebut, terdapat berbagai cara untuk mengklasifikasi ketepatan waktu kelulusan mahasiswa, salah satunya dengan metode jaringan syaraf tiruan Backpropagation. Data yang digunakan yaitu data lulusan mahasiswa Program Studi Sistem Informasi Universitas Jember angkatan tahun 2011-2013. Atribut yang digunakan untuk klasifikasi berjumlah 9 atribut, yaitu nilai Indeks Prestasi (IP) semester 1 sampai 6, jumlah SKS yang ditempuh, semester saat terakhir kali memprogram matakuliah Kuliah Kerja Nyata (KKN) dan Praktik Kerja Lapang (PKL). Kelas yang digunakan untuk klasifikasi yaitu ketepatan waktu lulus mahasiswa tersebut. Penentuan ketepatan waktunya yaitu jika masa studi kurang dari sama dengan 60 bulan, maka mahasiswa tersebut lulus tepat waktu dan jika lebih dari 60 bulan maka tidak tepat waktu. Penerapan metode klasifikasi ini dilakukan dengan menggunakan learning rate 0.1, 0.3, 0.5, 0.7, dan 0.9 dengan batas iterasi masing-masing 1.000, 2.000, dan 3.000 iterasi. Nilai akurasi tertinggi yaitu sebesar 98,82% pada iterasi ke-2000 dan 3000, masing-masing dengan learning rate = 0,7 dan 0,9 untuk iterasi ke-2000 dan learning rate = 0,5, 0,7 dan 0,9 untuk iterasi ke-3000. Hasil tersebut didapat dari jumlah data benar sebanyak 167 data dari 169 data secara keseluruhan. Kata Kunci: Data Mining, Klasifikasi, Jaringan Syaraf Tiruan, Metode Backpropagation Neural Network.