Articles
2
Documents
Klasifikasi Metagenom dengan Metode Naïve Bayes Classifier

Jurnal Ilmu Komputer dan Agri-Informatika Vol 3, No 1 (2014)
Publisher : Departemen Ilmu Komputer IPB

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1294.449 KB)

Abstract

Studi metagenom merupakan langkah penting pada pengelompokan taksonomi. Pengelompokan pada metagenom dapat dilakukan dengan menggunakan metode binning. Binning diperlukan untuk mengelompokkan contigs yang dimiliki oleh masing-masing kelompok spesies filogenetik. Pada penelitian ini, binning dilakukan dengan menggunakan pendekatan komposisi berdasarkan supervised learning (pembelajaran dengan contoh). Metode supervised learning yang digunakan yaitu Naïve Bayes Classifier. Adapun metode yang digunakan untuk ekstraksi ciri adalah dengan melakukan perhitungan frekuensi k-mer. Klasifikasi pada metagenom dilakukan berdasarkan tingkat takson genus. Dari proses klasifikasi yang dilakukan, akurasi yang diperoleh dengan menggunakan fragmen pendek (400 bp) adalah 49.34 % untuk ekstraksi ciri 3-mer dan 53.95 % untuk ekstrasi ciri 4-mer. Sementara itu, untuk fragmen panjang (10 kbp), akurasi mengalami peningkatan yaitu 82.23 % untuk ekstraksi ciri 3-mer dan 85.89 % untuk esktraski ciri 4-mer. Dari hasil tersebut dapat disimpulkan bahwa akurasi semakin tinggi seiring dengan semakin panjangnya ukuran fragmen. Selain itu, penelitian ini juga menyimpulkan bahwa metode ekstrasi ciri yang memberikan hasil paling maksimal adalah dengan menggunakan ekstraksi ciri 4-mer.Kata Kunci: metagenom, k-mer, Naïve Bayes Classifier, binning, klasifikasi

Comparison of Data Partitioning Schema of Parallel Pairwise Alignment on Shared Memory System

TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 13, No 2: June 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Original Source | Check in Google Scholar

Abstract

The pairwise alignment (PA) algorithm is widely used in bioinformatics to analyze biological sequence. With the advance of sequencer technology, a massive amount of DNA fragments are sequenced much quicker and cheaper. The alignment algorithm needs to be parallelized to be able to align them in a shorter time. Many previous researches have parallelize PA algorithm using various data partitioning schema, but it is unclear which one is the best. The data partitioning schema is important for parallel PA performance, because this algorithm use dynamic programming technique that needs intense inter-thread communication. In this paper, we compared four partitioning schemas to find the best performing one on shared memory system. Those schemas are: blocked columnwise, rowwise, antidiagonal, and blocked columnwise with manual scheduling and loop unrolling. The last schema gave the best performance of 89% efficiency on 4 threads. This result provided fine-grain parallelism that can be used further to develop parallel multiple sequence alignment (MSA).