Articles

Found 14 Documents
Search

Sistem Informasi Pelayanan Online di Mapolresta Bandung

Jurnal Abdimas BSI: Jurnal Pengabdian Kepada Masyarakat Vol 1, No 1 (2018): Jurnal Abdimas BSI: Jurnal Pengabdian Kepada Masyarakat
Publisher : LPPM Universitas UBSI

Show Abstract | Original Source | Check in Google Scholar | Full PDF (487.509 KB)

Abstract

AbstrakPeranan teknologi sangatlah membantu dalam pekerjaan sehari-hari baik organisasi, perusahaan yang berupa unit kecil ataupun perusahaan besar. Dalam hal ini dikarenakan adanya tuntunan atas pelayanan prima kepada rekan binis atau masyarakat sebagai objek pengguna. Terlepas dari itu yang terjadi di Mapolresta sebagai sarana pelayanan yang dirasa masih perlunya ada perbaikan disetiap unit kerja. Sebagai contoh dalam hal info jadwal SIM keliling dan info kepada masyarakat yang bersifat umum. Karena dengan adanya system informasi berupa website ini sangatlah membantu dari segi waktu serta lebih cepat sampai ke masyarkat.Kata Kunci : Sistem informasi, Pelayanan, SIM Keliling AbstractThe role of technology is very helpful in the daily work of organizations, companies in the form of small units or large companies. In this case due to the guidance of the excellent service to fellow business or community as the user object. Regardless of that happening in Mapolresta as a service facility that still need improvement in every work unit. For example in terms of scheduled mobile SIM info and info to the general public. Because with the information system of this website is very helpful in terms of time and faster to the community.Keywords : Information System, Service, Mobile SIM

Klasifikasi Statistikal Tekstur Sel Pap Smear Dengan Decesion Tree

Jurnal Informatika Vol 1, No 1 (2014): Jurnal INFORMATIKA
Publisher : LPPM Universitas BSI

Show Abstract | Original Source | Check in Google Scholar | Full PDF (545.823 KB)

Abstract

ABSTRAK Penelitian ini menyajikan analisis tekstur dan klasifikasi citra sel pap smear. Pada analisis tekstur difokuskan pada citra nukleus sel Pap smear, metode yang digunakan adalah metode Gray Level Co-occurrence Matrix (GLCM) dengan menggunakan lima parameter yaitu korelasi, energi, homogenitas dan entropi ditambah dengan menghitung nilai Brightness pada citra yang diproses. Citra yang digunakan dalam penelitian ini menggunakan data citra Harlev, yang terdiri dari 280 citra yang sudah dikategorikan ke dalam 7 kelas yaitu 3 kelas sel normal yang meliputi Normal Superficial, Normal Intermediate, and Normal Columnar dan 4 kelas lainnya adalah kategori kelas citra sel abnormal yang meliputi Mild (Light) Dyplasia, Moderate Dysplasia, Severe Dysplasia dan Carcinoma In Situ. Berdasarkan hasil pengolahan citra yang menghasilkan nilai matriks dari setiap parameter yang dihitung, citra sel Pap smear akan diklasifikasikan menurut jenisnya normal atau abnormal dan berdasarkan kelasnya dengan menggunakan decision tree yang diolah dengan algoritma clasifier J48 pada aplikasi weka. Untuk akurasi yang dihasilkan dari klasifikasi sel normal dan abnormal adalah 73% dan untuk akurasi klasifikasi tujuh kelas adalah 34,3%. Kata Kunci : Klasifikasi, Statistikal Tekstur, Sel Pap Smear, Decision Tree. ABSTRACT This research presents the texture analysis and classification of cells pap smear image. Texture analysis focused on the cell nucleus Pap smear image, the research method used the Gray Level Co-occurrence Matrix (GLCM) method, by using five parameter that include contrast, correlation, energy, homogeneity, entropy and brightness. The image used in this research using image data Harlev. The images from 280 subjects are categorized into seven classes. Three classes of which are normal cell image class categories that include Normal Superficial, Normal Intermediate, and Normal Columnar, and the other four classes are categories of abnormal cell image class that include Mild (Light) Dyplasia, Moderate Dysplasia, Severe Dysplasia and Carcinoma In Situ. Based on the results of image processing that produces a matrix of values of each parameter were calculated, Pap smear cell image will be classified according to the type of normal or abnormal and based on the class using the decision tree treated with algorithm clasifier J48 in weka applications. To the resulting accuracy of the classification normal and abnormal cells is 73% and for seven class classification accuracy is 34,3%. Keywords : Classification, Statistical Texture, Cell Pap Smear, Decision Tree

METODE DATA MINING UNTUK KLASIFIKASI DATA SEL NUKLEUS DAN SEL RADANG BERDASARKAN ANALISA TEKSTUR

Jurnal Informatika Vol 2, No 2 (2015): Jurnal INFORMATIKA
Publisher : LPPM Universitas BSI

Show Abstract | Original Source | Check in Google Scholar | Full PDF (242.274 KB)

Abstract

ABSTRACT - The Pap Smear test is done to see the presence of infection or changes in cells that can turn into cancer cells. In this research is using data on analysis results of texture image processing on previous research that is using a nucleus cell and inflammation cell in the image Pap Smear cell. The purpose of this research is to find the best method for classifying the nucleus cell and inflammation cell based on texture analysis GLCM (Gray Level Co-occurrence Matrix) in this research used of method Decision tree (C 4.5), Naive Bayes and k-Nearest Neighbour. The results of this research brings about the best methods for classification of the data nucleus cell and inflammation cell that is a method of Decision tree (C4.5) with accuracy 97,56% whereas results for Naive Bayes 90,89% and k-Nearest Neighbour 95,97%. Keywords: Data mining, classification, Pap Smear cell, Texture Analysis ABSTRAKSI - Tes Pap Smear dilakukan untuk melihat adanya infeksi atau perubahan sel-sel yang dapat berubah menjadi sel kanker. Pada penelitian ini menggunakan data analisis tekstur yang didapatkan dari hasil pengolahan citra pada penelitian sebelumnya yaitu menggunakan sel nukleus dan sel radang pada citra sel Pap Smear. Tujuan dari penelitian ini adalah mencari metode terbaik untuk mengklasifikasikan sel nukleus dan sel radang berdasarkan analisa teksur GLCM (Gray Level Co-occurrence Matrix) Metode yang digunakan dalam penelitian ini adalah metode Decision tree (C4.5), Naive Bayes dan k-Nearest Neighbour. Hasil dari penelitian ini didapatkan metode terbaik untuk klasifikasi data sel nukleus dan sel radang yaitu metode Decision tree (C4.5) dengan akurasi 97,56% sedangkan hasil untuk Naive Bayes 90,89% dan k-Nearest Neighbour 95,97%. Kata Kunci: Data mining, Klasifikasi, Sel Pap Smear, Analisa Tekstur

Implementasi Algoritma PSO Dan Teknik Bagging Untuk Klasifikasi Sel Pap Smear

Jurnal Informatika Vol 4, No 2 (2017): Jurnal INFORMATIKA
Publisher : LPPM Universitas BSI

Show Abstract | Original Source | Check in Google Scholar | Full PDF (348.001 KB)

Abstract

AbstrakPenyakit kanker adalah salah satu penyebab kematian di seluruh dunia. Di indonesia  Kanker serviks dan kanker payudara merupakan penyakit kanker dengan penderita terbanyak. Penyebab kanker serviks adalah virus HPV (Human Papilloma Virus) tipe 16 dan 18. Tes Pap Smear merupakan salah satu pencegahan kanker serviks secara dini. Pada pemeriksaan Pap Smear sel akan di amati di bawah mikroskop untuk membedakan sel normal dan abnormal, pada pemeriksaan ini ahli patologi terkadang kesulitan dalam pengamatan sel karena bentuk sel yang hampir mirip, dan pemeriksaan sel memakan waktu dan terkadang terjadi kesalahan. Tujuan dari penelitian ini adalah mengusulkan model klasifikasi untuk klasifikasi sel Pap Smear untuk memudahkan ahli patologi. Metode yang digunakan adalah kombinasi dari metode Particle Swarm Optimization untuk seleksi fitur dan Teknik Bagging untuk mengatasi jumlah kelas yang tidak seimbang. Dari kombinasi ke 2 metode tersebut di ujicoba dengan metode klasifikasi Decision Tree, Naïve Bayes dan K-NN untuk mengetahui perbandingan dari setiap metode klasifikasi. Hasil dari penelitian ini menunjukkan bahwa penggabungan metode Particle Swarm Optimization dan Teknik Bagging terbukti efektif untuk klasifikasi sel Pap Smear, itu di lihat dari hasil akurasi yang ditunjukkan. Klasifikasi dengan metode K-NN menghasilkan akurasi terbaik untuk klasifikasi sel normal dan abnormal yaitu 95,05%, sedangkan metode klasifikasi dengan akurasi terbaik untuk klasifikasi 7 kelas yaitu Decision Tree dengan 64,24%. Kata Kunci: Kanker Serviks, Pap Smear dan Klasifikasi.  AbstractCancer is one of the leading causes of death in worldwide. In Indonesia cervical cancer and breast cancer is a cancer disease with most patients. The cause of cervical cancer is HPV virus (Human Papilloma Virus) types 16 and 18. Pap Smear test is one of the prevention of cervical cancer early. On Pap Smear examination the cells will be observed under a microscope to distinguish normal and abnormal cells, on this examination Pathologists sometimes find it difficult to observe cells because of the almost identical cell shape, and examination are time-consuming and sometimes faulty. The purpose of this research is to propose a classification model for Pap Smear to facilitate Pathologists. The method is used a combination of Particle Swarm Optimization for selection feature and Bagging technique to overcome an unbalanced of classes. From the combination of the two methods, we tested the classification method of Decision Tree, Naïve Bayes and K-NN to find out the comparison of each classification method.  The result of this research indicate that the incorporation of Particle Swarm Optimization method and Bagging Technique proved effective for classification of Pap Smear cells, it is viewed from the accuracy shown results. Classification with K-NN method gives the best accuracy for normal and abnormal cell classification of 95,05%, while classification method with best accuracy for classification 7 class is Decision Tree with 64,24%. Keywords: Cervical Cancer, Pap Smear and Classification.

ANALISA PERBANDINGAN METODE SEGMENTASI CITRA PADA CITRA MAMMOGRAM

Jurnal Informatika Vol 3, No 2 (2016): Jurnal INFORMATIKA
Publisher : LPPM Universitas BSI

Show Abstract | Original Source | Check in Google Scholar | Full PDF (935.09 KB)

Abstract

AbstractCancer is a desaeas with a high prevalence in the world. As many 8,2 million people died of cancer. The prevalence of cancer was happened in woman that is breast cancer. Breast cancer is a malignancy derived from grandular cells, gland duct and supporting the breast tissues. There are many ways of detecting the presence of breast cancer which one is mammography test that aims to examine the human breast using low-dose X-rays. Observation mammography results in the form of mammogram images can be done with image processing, in this way the process of observation is not take a long time and error in the observation can be reduced. One of the process image processing is image segmentation, the step of image segmentation is an important in image analysis there force is needed method in process of image sementation. This observation is aims to analyze comparison of two image segmentation methods of mammogram images that is using Watershed method and Otsu method after that it will see the quality of image by calculating the signal to noise ratio and timing run of each method. The result of this observation is showed that the signal to noise ratio on the Watershed method 7,475 dB and Otsu method 6.197 dB and the conclution is Watershed method is better than Otsu method, whereas if viewed the timing run Watershed method 0,016 seconds is more faster than Otsu method.

Manajemen Usaha Serta Pemanfaatan Sosial Media Bagi UMKM Baso Malang Campur SariManajemen Usaha Serta Pemanfaatan Sosial Media Bagi UMKM Baso Malang Campur Sari

Jurnal Abdimas BSI: Jurnal Pengabdian Kepada Masyarakat Vol 1, No 1 (2018): Jurnal Pengabdian kepada Masyarakat
Publisher : LPPM Universitas UBSI

Show Abstract | Original Source | Check in Google Scholar | Full PDF (383.119 KB)

Abstract

AbstrakKegiatan pengabdian kepada masyarakat yang dilakukan oleh tim dari Universitas BSI telah memberikan manfaat kepada salah satu Usaha Mikro, Kecil dan Menengah (UMKM) khususnya di Kota Bandung yaitu pada perusahaan Baso Malang Campur Sari. Kendala – kendala yang kami peroleh mengenai pengaturan sumber daya manusia yang tidak optimal, pembukuan tidak rapih serta pemasaran masih menggunakan media motoris yang belum meluas. Sample yang kita ambil sebanyak 20 orang terdiri dari 1 orang kepala produksi, 5 orang Operasional produksi dan 14 orang tenaga pemasaran yang menggunakan motor yang sudah disediakan oleh pemilik UMKM. Tujuan dari kegiatan ini yaitu untuk memberikan pembinaan mengenai manajemen usaha perusahaan dan memberikan pelatihan dalam hal meningkatkan kemampuan dan pengetahuan pengurus UMKM mengenai teknologi informasi yaitu melalui aplikasi sosial media. Metode yang diterapkan dalam kegiatan ini adalah pelatihan, pendampingan manajemen, penerapan & penggunaan sistem informasi untuk pemasaran. Hasil dari kegiatan yaitu diharapkan efektifitas dan efisiensi kinerja dapat meningkat, adanya peningkatan pendapatan dan dengan adanya teknologi informasi sehingga wilayah pemasaran dapat lebih meluas. Kata Kunci: Manajemen Usaha, Sosial Media, UMKM AbstractCommunity service activities undertaken by a team from BSI University has provided benefits to one of Micro, Small and Medium Enterprises (MSMEs), especially in the city of Bandung, namely the company of Baso Malang Campur Sari. Constraints - constraints that we get about the setting of human resources are not optimal, bookkeeping neat and marketing still use the media that has not been widespread motor. Sample that we take as many as 20 people consists of 1 head of production, 5 people Production operations and 14 people marketing personnel who use the motor that has been provided by the owners of SMEs. The purpose of this activity is to provide guidance on the companys business management and provide training in terms of improving the skills and knowledge of MSME management of information technology through social media applications. The methods applied in this activity are training, management assistance, implementation & use of information systems for marketing. The results of the activity is expected to be effectiveness and efficiency of performance can increase, the increase in income and with the existence of information technology so that the marketing area can be more widespread. Keyword: Business management, Social Media, SMEs

Optimasi Fitur Menggunakan Backward Elimination Dan Algoritma SVM Untuk Klasifikasi Kanker Payudara

Jurnal Informatika Vol 4, No 1 (2017): Jurnal INFORMATIKA
Publisher : LPPM Universitas BSI

Show Abstract | Original Source | Check in Google Scholar | Full PDF (749.879 KB)

Abstract

AbstrakOrganisasi Kesehatan Dunia (WHO) tahun 2004, menyatakan bahwa 5 besar kanker di dunia adalah kanker paru-paru, kanker payudara, kanker usus besar, kanker lambung, dan kanker hati. WHO mengestimasikan bahwa 84 juta orang meninggal akibat kanker dalam rentang waktu 2005-2015. Survei yang dilakukan WHO menyatakan 8 sampai 9% wanita mengalami kanker payudara. Hal itu membuat kanker payudara sebagai jenis kanker yang paling banyak ditemui pada wanita setelah kanker leher rahim. Pada penelitian ini dilakukan klasifikasi tingkat keganasan breast cancer dengan menggunakan metode optimasi fitur Backward Elimination dan Support Vector Machine (SVM), yang bertujuan untuk memudahkan ahli dalam mengidentifikasi kanker payudara. Berdasarkan hasil dan pembahasan yang telah dilakukan, dapat disimpulkan bahwa metode Support Vector Machine (SVM) adalah Algoritma yang baik diantara algoritma yang penulis telah uji untuk pengklasifikasian Kanker Payudara menggunakan Dataset WBC (Wisconsin Breast Cancer). Dimana nilai klasifikasi performansi Akurasi dan AUC nya adalah yang tertinggi, sedangkan untuk penggabungan algoritma seleksi fitur Backward Elimination dan Support Vector Machine (SVM) mendapatkan peningkatan Akurasi sebesar 14% sehingga nilai tingkat akurasi akhirnya sebesar 97.14% dan nilai AUC mencapai 0.995. Keywords: Kanker Payudara, Backward Elimination, Support Vector Machine, Klasifikasi. AbstractThe World Health Organization (WHO) in 2004, States that the 5 large world cancer is lung cancer, breast cancer, colon cancer, stomach cancer, and liver cancer. The who estimates that 84 million people died of cancer in 2005-2015 time frame. A survey conducted the WHO declares the 8 to 9% of women experiencing breast cancer. It makes breast cancer as the most common type of cancer found in women after cervical cancer. This research was conducted on the classification of the degree of malignancy of breast cancer by using Backward Elimination feature optimization method and Support Vector Machine (SVM), which aims for make it easier the expert in identifying breast cancer. Based on the results and discussion has been done, it can be concluded that the method of Support Vector Machine (SVM) is a good algorithm between the algorithms that the author has been testing for breast cancer classification using Dataset WBC (Wisconsin Breast Cancer). Where the value of classification Accuracy performance and his AUC is the highest, while for the merge feature selection algorithm Backward Elimination and Support Vector Machine (SVM) get an increased Accuracy of 14% accuracy level value so that the end of 102.72% and AUC values reach 0995. Keyword: Breast Cancer, Backward Elimination, Support Vector Machine, Classification.

IMPLEMENTASI METODE K-NEAREST NEIGHBOR UNTUK KLASIFIKASI CITRA SEL PAP SMEAR MENGGUNAKAN ANALISIS TEKSTUR NUKLEUS

Jurnal Informatika Vol 2, No 1 (2015): Jurnal INFORMATIKA
Publisher : LPPM Universitas BSI

Show Abstract | Original Source | Check in Google Scholar | Full PDF (320.282 KB)

Abstract

Abstract - Cervical cancer is the one of cause women death in the world. At least every 2 minutes 1 people death it cause of cervical cancer. One of prevention to early detection of cervical cancer is Pap Smear examination. Pap Smear test conducted to determine infection or abnormal cell that can turn into cancer cell. In this research used texture analysis data obtained from the result of image processing cell nucleus of normal and abnormal Pap Smear and 7 class Pap Smear cells is Normal Superficial (NS), Normal Intermediate (NI), Normal Columnar (NC), Mild (Light) Dysplasia (MLD), Severe Dysplasia (SD), Moderate Dysplasia (MD), Carcinoma In Situ (CIS). Image data derived from the data Harlev is totaling 280 images. The method of this research is used classification K-nearest neighbor method and for testing is used Confusion Matrix to see how much accuracy is generated by using K-nearest neighbor method. The result accuracy of normal and abnormal classification is 73,10% and for class classification is 33,33%. Keywords: Texture Analysis, K-nearest neighbor , Classification, Pap Smear Cell, Cervical Cancer, Confusion Matrix. Abstrak - Kanker serviks merupakan salah satu penyebab kematian wanita di dunia. Setidaknya setiap 2 menit 1 orang di dunia meninggal karena kanker serviks. Salah satu cara pencegahan untuk mendeteksi secara dini kanker serviks adalah dengan melakukan Pemeriksaan Pap Smear. Tes Pap Smear dilakukan untuk melihat adanya infeksi atau sel-sel yang abnormal yang dapat berubah menjadi sel kanker. Pada penelitian ini menggunakan data analisis tekstur yang didapatkan dari hasil pengolahan citra inti sel Pap Smear normal dan abnormal dan 7 kelas sel Pap Smear yaitu Normal Superficial (NS), Normal Intermediate (NI), Normal Columnar (NC), Mild (Light) Dysplasia (MLD), Severe Dysplasia (SD), Moderate Dysplasia (MD), Carcinoma In Situ (CIS). Data citra berasal dari data Harlev yang berjumlah 280 citra. Metode yang digunakan dalam penelitian ini adalah metode klasifikasi K-nearest neighbor dan untuk pengujiannya menggunakan Confusion Matrix untuk melihat seberapa besar akurasi yang dihasilkan dengan menggunakan metode K-nearest neighbor . Akurasi yang dihasilkan dari klasifikasi normal dan abnormal adalah 73,10% dan untuk akurasi klasifikasi kelas adalah 33,33%. Kata Kunci: Analisis Tekstur, K-nearest neighbor , Klasifikasi, Sel Pap Smear, Kanker Serviks, Confusion Matrix.

Sistem Pemilihan Mesin Cuci Berdasarkan Kebutuhan Konsumen Menggunakan Fuzzy Tahani dan Promethee

Jurnal Informatika Vol 5, No 1 (2018): Jurnal INFORMATIKA
Publisher : LPPM Universitas BSI

Show Abstract | Original Source | Check in Google Scholar | Full PDF (471.11 KB)

Abstract

Abstrak Berdasarkan hasil survei terhadap kebutuhan mesin cuci pada tahun 2013 pertumbuhan mesin cuci nasional naik sebesar 28%, Menurut data Euro Monitor tahun 2017, penetrasi mesin cuci di Indonesia selama lima tahun terakhir terus meningkat. Sekitar 74% masyarakat di Kota besar seperti Jakarta telah mengandalkan mesin cuci untuk membantu membersihkan pakaian. Namun pada pembelian mesin cuci, sebagian besar masyarakat masih tertarik dengan harga yang murah tanpa mengetahui spesifikasi detail mengenai mesin cuci yang akan dibeli apakah sesuai kebutuhan atau tidak. Karena kurangnya kesadaran masyarakat, maka dibuat sebuah sistem pendukung keputusan menggunakan metode fuzzy tahani dan promethee untuk meningkatkan kualitas rekomendasi mesin cuci sesuai kebutuhan konsumen. Metode fuzzy tahani digunakan untuk melakukan pengurutan data mesin cuci berdasarkan kriteria yang menghasilkan nilai 0 sampai dengan 1. Setelah itu, metode promethee digunakan untuk mendapatkan bobot mesin cuci dan akan dilakukan pengurutan mesin cuci sesuai bobot yang didapat. Hasil penelitian ini menunjukkan bahwa adanya sistem pendukung keputusan yang dibangun, masyarakat yang ingin membeli mesin cuci dapat memilih dengan tepat, jelas dan objektif. Hasil akurasi yang dihasilkan adalah 90%. Kata Kunci: sistem pendukung keputusan, pemilihan mesin cuci, fuzzy tahani, promethee Abstract Based on results of survey about the needs of washing machines in 2013, the growth of national washing machines increased by 28%. According to Euro Monitor Data of 2017, penetration of washing machines in Indonesia over the last five years continues to increase. About 74 % of the people in big cities like Jakarta have relied on a washing machine to help clean clothes. However on the purchase of a washing machine, most of the people still interested in a cheap price without knowing detail specification of the washing machine which will be purchased whether as needed or not. Due the lack of public awareness, then made a decision support system using fuzzy tahani and promethee method to improve the quality of the washing machine recommendations according to needs of the consumers. Fuzzy tahani method is used to perform the washing machine data sorting based on the cirteria that yields a value of 0 to 1. After that, Promethee method is used to get weight of the washing machine and will do sorting machine according to the weight obtained. The results of this study indicate that a decision support system who has been built, people who want to buy a washing machine can choose the washing machine properly, cleary and objectively. The result of accuracy is 90%. Keywords: decision support system, washing machine selection, fuzzy tahani, promethee

Strategi Pengembangan Usaha Pada UMKM Baju Bayi Indra Collection

Jurnal Abdimas BSI: Jurnal Pengabdian Kepada Masyarakat Vol 1, No 2 (2018): Jurnal Pengabdian Kepada Masyarakat
Publisher : LPPM Universitas UBSI

Show Abstract | Original Source | Check in Google Scholar | Full PDF (380.215 KB)

Abstract

AbstrakModal masih menjadi masalah utama dalam suatu usaha. Kemajuan suatu usaha ditentukan oleh seberapa besar modal yang dimiliki. Semakin besar modal yang dimiliki maka semakin besar peluang usaha tersebut untuk memperoleh keuntungan yang berdampak pada perkembangan usaha. Tujuan dari penelitian ini adalah untuk memberikan masukan mengenai strategi pengembangan usaha kecil dan menengah terkait modal usaha yang diharapkan dapat dijadikan sebagai masukan bagi pengembangan usaha kecil dan menengah di Kota Bandung khususnya untuk industri baju bayi Indra Collection. Metode yang digunakan dalam penelitian ini adalah metode penelitian deskriptif dengan pendekatan secara kualitatif yang menggambarkan dan memberikan solusi pada pelaku industri kecil dan menengah khususnya pada industri baju bayi Indra Collection. Hasil penelitian ini menjelaskan bahwa strategi pengembangan usaha dimulai dari cara pengelolaan modal usaha dan manajemen keuangan yang bijak dengan cara penghematan dan pengalokasian dana yang digunakan sesuai dengan peruntukannya. Dan hal ini tentunya harus didukung dengan memberikan pendampingan dan pembinaan yang tepat agar industri kecil dan menengah bisa berkembang pesat dan tetap bertahan. Kata Kunci: Industri kecil dan Menengah, Modal Usaha