Aniti Payudan, Aniti
Unknown Affiliation

Published : 2 Documents
Articles

Found 2 Documents
Search

OPTIMIZATION OF COLLIMATOR NEUTRON DESIGN FOR BORON NEUTRON-CAPTURE CANCER THERAPY (BNCT) BASED CYCLOTRON 30 MeV Payudan, Aniti; Haryadi, Aris; Abdullatif, Farzand
Indonesian Journal of Physics and Nuclear Applications Vol 2 No 3 (2017)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Original Source | Check in Google Scholar | Full PDF (680.235 KB)

Abstract

This research in BNCT has a goal to design a collimator that can be used for cancer therapy. Simulations were carried out by MCNPX software. A collimator is designed by cyclotron 30 MeV as a neutron generator. Independent variables varied were material and thickness of each collimator’s component to get five of IAEA’s standard of the neutron beam. The result is two collimator designs that can pass all IAEA’s standard. Those designs are cyclotron collimator I and cyclotron collimator II. Collimator designs obtained are tube collimator consisting of a cylindrical target 7Be length of 1.4 cm and radius 1 cm, a lead wall with thickness 23 cm, cylindrical heavy water moderator (D2O) with radius 3 cm. Filter Cd-nat for cyclotron collimator I with a thickness of 1 mm and a radius 3 cm. Cyclotron collimator II uses 60Ni with a thickness of 5 cm as a filter. The radius aperture is 3 cm. These two collimator designs can be used for cancer treatment with BNCT. Dosimetry calculation and manufacture of prototypes are needed to test the application of this design.
Basic Principle Application and Technology of Boron Neutron Capture Cancer Therapy (BNCT) Utilizing Monte Carlo N Particle 5’S Software (MCNP 5) with Compact Neutron Generator (CNG) Payudan, Aniti; Aziz, Abdullah Nur; Sardjono, Yohannes
Indonesian Journal of Physics and Nuclear Applications Vol 1 No 1 (2016)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Original Source | Check in Google Scholar | Full PDF (602.52 KB)

Abstract

The purpose are to know basic principle, needed component, types of compact neutron generator, plus and minus CNG, identify materials can use as collimator, know physics parameters as input software MCNP 5, knowing step simulation with software MCNP 5, dose in BNCT, knowing boron compound that use in BNCT, getting collimator design for BNCTS application with source is compact neutron generator and count physics parameter of collimator output and compares it with standard IAEA. Method are reading reference and simulation with MCNP 5. The result are BNCT use high linear energy transfer from alpha and lithium as a result of 10B(n,α)7Li reaction. BNCT method is effective for cancer therapy. It is not dangerous to normal tissues. To work perfectly, BNCT needs neutron, boron (BSH and BPA as boron compound) Indonesia have study turmeric as boron compound, neutron source, collimator and dose. Dose component in BNCT that important are dose of recoil proton, dose of gamma, dose alfa and dose radiation to environmentally. CNG produce neutron with fussion reaction of deuterium-deuterium (2,45 MeV), deuterium-tritium (14 MeV), tritium-tritium(11,31 MeV) can used as neutron source BNCT. Many kinds of CNG are axial, coaxial, toroidal, plasma design, accelerator design, and CNG with diameter 2,5 cm. CNG have more benefit than another neutron source, make CNG compatible as BNCT application. Neutron from CNG need collimator to get neutron as IAEA’s parameter.  Material for collimator are wall and aperture (material: Ni, Pb, Bi), moderator (Al, Al2O3, S, AlF3), filter (6Li,10B, LiF, Al, Cd-nat,  Ni-60, BiF3, 157Gd, 151Eu), gamma shield (Bi, Pb). Simulation using MCNP 5 has severally steps, the first is sketching problem, the second is making listing program with notepad, the third open program on visual editor, and the last is running program. Acquired result is design tube collimator with radius 71 cm and high 139, 5 cm. Design contained on lead wall as thick as 19, 5 cm; moderate: heavy water as thick as 4 cm, AlF3 girdle a half of part CNG, MgF 2 (19 cm + 10 cm), Al (6,5 cm + 5 cm);Gamma shield: bismuth, and aperture with diameter 6 cm by steps aside nickel. The result collimator output cross three of five IAEAS defaults. They are the ratio among dosed gamma with flux epithermal is 5,738×10 -24Gy. cm 2 .n -1, the value of ratio among thermals neutron flux with epithermal neutron is 0, 02567, and ratio among current with flux neutron completely is 1, 2. Need considerable effort of all part to realize BNCT in Indonesia.