. Suwarsono, .
Unknown Affiliation

Published : 5 Documents
Articles

Found 5 Documents
Search

THE EFFECT OF ENVIRONMENTAL CONDITION CHANGES ON DISTRIBUTION OF URBAN HEAT ISLAND IN JAKARTA BASED ON REMOTE SENSING DATA Prasasti, Indah; Suwarsono, .; Sari, Nurwita Mustika
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 1 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (777.162 KB) | DOI: 10.30536/j.ijreses.2015.v12.a2670

Abstract

Anthropogenic activities of urban growth and development in the area of Jakarta has caused increasingly uncomfortable climatic conditions and tended to be warmer and potentially cause the urban heat island (UHI). This phenomenon can be monitored by observing the air temperature measured by climatological station, but the scope is relatively limited. Therefore, the utilization of remote sensing data is very important in monitoring the UHI with wider coverage and effective. In addition, the remote sensing data can also be used to map the pattern of changes in environmental conditions (microclimate). This study aimed to analyze the effect of changes in environmental conditions (land use/cover, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Build-up Index (NDBI)) toward the spread of the urban heat island (UHI). In this case, the UHI was identified from pattern changes of Land Surface Temperature (LST) in Jakarta based on data from remote sensing. The data used was Landsat 7 in 2007 and Landsat 8 in 2013 for parameter extraction environmental conditions, namely: land use cover, NDVI, NDBI, and LST. The analysis showed that during the period 2007 to 2013, there has been a change in the condition of the land use/cover, impairment NDVI, and expansion NDBI that trigger an increase in LST and the formation of heat islands in Jakarta, especially in the area of business centers, main street and surrounding area, as well as in residential areas.
THE USE OF HIGH RESOLUTION IMAGES TO EVALUATE THE EVENT OF FLOODS AND TO ANALYSIS THE RISK REDUCTION CASE STUDY: KAMPUNG PULO, JAKARTA Khomarudin, M. Rokhis; Suwarsono, .; Ambarwati, Dini Oktavia; Prabowo, Gunawan
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1399.039 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2610

Abstract

The flood hit Kampung Pulo region in almost every year. This disaster has caused the evacuation of some residents in weeks. Given the frequency of occurrence is quite high in the region it is necessary to do a study to support disaster risk reduction. This study aimed to evaluate the incidence of flooding that occurred in Kampung Pulo in terms of topography, river conditions, characteristics of the building, and socioeconomic conditions. Methods of study include geomorphology analysis, identification of areas of stagnant, the estimated number of people exposed, the estimation of socio-economic conditions of the population, as well as determining the location of an evacuation. The data used is high-resolution remote sensing imagery is QuickBird and SPOT-6. It also used the results of aerial photography using Unmanned Aerial Vehicle (UAV). Aerial photography was conducted on January 18, 2013, which is when the serious flooding that inundated almost the entire region of Kampung Pulo. Information risk level of buildings and population resulting from this study were obtained by using GIS. The results obtained from this study can be used to develop recommendations and strategies for flood mitigation in Kampung Pulo, Jakarta. One of them is the determination of the location for vertical evacuation plan in the affected areas.
DETECTING THE AFFECTED AREAS OF MOUNT SINABUNG ERUPTION USING LANDSAT 8 IMAGERIES BASED ON REFLECTANCE CHANGE Suwarsono, .; Hidayat, .; Nugroho, Jalu Tejo; Wiweka, .; Parwati, .; Khomarudin, M. Rokhis
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 1 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1498.92 KB) | DOI: 10.30536/j.ijreses.2015.v12.a2672

Abstract

The position of Indonesia as part of a "ring of fire" bringing the consequence that the life of the nation and the state will also be influenced by volcanism. Therefore, it is necessary to map rapidly the affected areas of a volcano eruption. Objective of the research is to detect the affected areas of Mount Sinabung eruption recently in North Sumatera by using optical images Landsat 8 Operational Land Imager (OLI). A pair of Landsat 8 images in 2013 and 2014, period before and after eruption, was used to analysis the reflectance change from that period. Affected areas of eruption was separated based on threshold value of reflectance change. The research showed that the affected areas of Mount Sinabung eruption can be detected and separated by using Landsat 8 OLI images based on the change of reflectance value band 4, 5 and NDVI. Band 5 showed  the highest values of decreasing and band 4 showed the highest values of increasing. Compared with another uses of single band, the combination of both bands (NDVI) give the best result for detecting the affected areas of  volcanic eruption.
DETECTING THE SPATIAL DISTRIBUTION OF SETTLEMENTS ON VOLCANIC REGION USING IMAGE LANDSAT-8 OLI IMAGERY Suwarsono, .; Khomarudin, M. Rokhis
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 1 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (885.315 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2602

Abstract

Geologically, Indonesia region is on track ring of fire, brings the consequence that the danger of volcanic eruption could occur at any time. Information sites where the settlement is located in the affected areas on emergency response process is needed in quick time. The availability of up to date data is important because it illustrates the actual condition of the region. Active volcanic landforms ranging from the crater to footslope in general is prone area to volcanic eruption, either by the threat of lava flows, pyroclastic falls, or lahars. This study aims to detect the spatial distribution of the settlement on volcanic region using Landsat-8 OLI. Parameters used for the detection of settlements is Normalized Difference Build-up Index (NDBI). Research methods include radiometric correction, delineation of the boundaries of volcanic landforms, NDBI value extraction, extraction of settlement areas, as well as the accuracy assesment.  Study area  is  Sinabung Volcano region located in the province of North Sumatera. Recently, the volcano experienced a devastating and catastrophic eruption. The results showed that the spatial distribution of settlements on volcanic landforms can be detected quickly from Landsat-8 OLI based on NDBI parameters with a sufficient degree of accuracy.
Pengembangan Basis Data Untuk Mengelola Komponen Perkakas Bantu Perakitan Suwarsono, .
Jurnal Teknik Industri Vol 3, No 1 (2002)
Publisher : Department Industrial Engineering, University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/JTIUMM.Vol3.No1.1-11

Abstract

Welding assembly jig companys activities are classified as job-order. Their products (jigs & fixtures) were depending on type of product, which was assembled. There are loot-of variations of product designs, process planning, tools, shop-floor control etc. to handling all customer order. One of the solutions is standardization product, to reduce product variation and the control problems.