Johannes Manalu, Johannes
Unknown Affiliation

Published : 5 Documents
Articles

Found 5 Documents
Search

GROWTH PROFILE ANALYSIS OF OIL PALM BY USING SPOT 6 THE CASE OF NORTH SUMATRA Carolita, Ita; Sitorus, J.; Manalu, Johannes; Wiratmoko, Dhimas
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 1 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (729.037 KB) | DOI: 10.30536/j.ijreses.2015.v12.a2669

Abstract

Oil Palm (Elaeis guineensis Jack.) is one of the world’s most important tropical tree crops. Its expansion has been reported to cause widespread environment impacts. SPOT 6 data is one of high resolution satellite data that can give information more detail about vegetation and the age of oil palm plantation. The objective of this study was to analyze the growth profile of oil palm and to estimate the productivity age of oil palm. The study area is PTP N 3 in Tebing Tinggi North Sumatera Indonesia.  The method that used is NDVI analysis and regression analysis for getting the model of oil palm growth profile. Data from the field were collected as the secondary data to build that model. The data that collected were age of oil palm and diameters of canopy for every age.   Results indicate that oil palm growth can be explained by variation of NDVI with formula y = -0.0004x2 + 0.0107x + 0.3912, where x is oil palm age and  Y is NDVI of SPOT, with R² = 0.657. This equation can be used to predict the age of oil palm for range 4 to 11 years with R2 around 0.89.
UJI MODEL FASE PERTUMBUHAN PADI BERBASIS CITRA MODIS MULTIWAKTU DI PULAU LOMBOK (THE TESTING OF PHASE GROWTH RICE MODEL BASED ON MULTITEMPORAL MODIS IN LOMBOK ISLAND) Parsa, Made; Dede Dirgahayu, Dede; Manalu, Johannes; Carolita, Ita; Harsanugraha, Wawan
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 14 No. 1 Juni 2017
Publisher : Indonesian National Institute of Aeronautics and Space (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1054.62 KB) | DOI: 10.30536/j.pjpdcd.2017.v14.a2621

Abstract

Model testing is a step that must be done before operational activities. This testing aimed to test rice growth phase models based on MODIS in Lombok using multitemporal LANDSAT imagery and 4eld data. This study was carried out by the method of analysis and evaluation in several stages, these are : evaluation of accuracy by multitemporal Landsat 8 image analysis, then evaluation by using 4eld data, and analysis of growth phase information to calculate model consistency. The accuracy of growth phase model was calculated using Confusion Matrix. The results of stage I analysis for phase of April 30 and July 19 showed the accuracy of the model is 58-59 %, while the evaluation of stage II for phase of period July 19 with survey data indicated that the overall accuracy is 53 %. However, the results of model consistency analysis show that the resulting phase of the smoothed MODIS imagery shows a consistent pattern as well as the EVI pattern of rice plants with an 86% accuracy, but not for pattern data without smoothing. This testing give conclusion is the model is good, but for operational MODIS input data must be smoothed 4rst before index value extraction.ABSTRAKUji model adalah sebuah tahapan yang harus dilakukan sebelum model tersebut digunakan untuk kegiatan yang bersifat operasional. Penelitian ini bertujuan untuk menguji akurasi model fase pertumbuhan padi berbasis MODIS di pulau Lombok terhadap citra Landsat multiwaktu dan data lapangan. Penelitian dilakukan dengan metode analisis dan evaluasi secara bertahap. Pertama, evaluasi akurasi menggunakan analisis citra Landsat 8 multiwaktu. Pada tahap kedua menggunakan data referensi hasil pengamatan lapangan, sedangkan tahap ketiga dilakukan analisis informasi fase pertumbuhan untuk mengetahui tingkat konsistensi model. Akurasi model fase pertumbuhan dihitung menggunakan matrik kesalahan. Hasil analisis dan evaluasi tahap I terhadap informasi fase 30 April dan 19 Juli menunjukkan bahwa ketelitian model mencapai 58-59 %, sementara hasil evaluasi tahap II terhadap fase periode 19 Juli menggunakan data hasil survei 20-25 Juli menunjukkan akurasi keseluruhan 53 %. Namun, hasil analisis konsistensi model menunjukkan bahwa fase yang dihasilkan dari citra MODIS yang di-smoothing menunjukkan pola yang konsisten sebagaimana pola EVI tanaman padi dengan akurasi 86 %, sedangkan pola EVI citra MODIS yang tidak di-smoothing tidak konsisten. Berdasarkan hasil ini disimpulkan bahwa model ini cukup baik, tetapi dalam operasionalnya perlu dilakukan smoothing citra MODIS input terlebih dahulu sebelum ekstrak nilai indek (EVI).
PERBANDINGAN METODE KLASIFIKASI PENUTUP LAHAN BERBASIS PIKSEL DAN BERBASIS OBYEK MENGGUNAKAN DATA PiSAR-L2 (COMPARISON BETWEEN PIXEL-BASED AND OBJECT-BASED METHODS FOR LAND COVER CLASSIFICATION USING PiSAR-L2 DATA) Manalu, Johannes; Sutanto, Ahmad; Trisakti, Bambang
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 13 No. 1 Juni 2016
Publisher : Indonesian National Institute of Aeronautics and Space (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1580.031 KB) | DOI: 10.30536/j.pjpdcd.2016.v13.a2936

Abstract

PiSAR-L2 program is an experimental program for PALSAR-2 sensor installed on ALOS-2. Research collaboration had been conducted between the Japan Aerospace Exploration Agency (JAXA) and Ministry for Research and Technology of Indonesia in 2012 to assess the ability of PiSAR-L2 data for some applications. This paper explores the utilization of PiSAR-L2 data for land cover classification in forest area using pixel-based and object-based methods, then carried out comparison between the two methods. PiSAR-L2 data full polarization with 2.1 level for Riau province was used. Field data conducted by JAXA team and landcover map from WWF were used as references to collect input and evaluation sample. Pre-processing was done by doing backscatter conversion and filtering, then classification was conducted and it`s accuracy was tested. Two methods were used, 1) Maximum Likelihood Enhance Neighbor classifier for pixel-based and 2) Support Vector Machine for object based classification. The effect of spatial resolution on classification result was also analyzed. The results show that pixel-based produced mixed pixels "salt and pepper", the classification accuracies were 62% for 2.5 m and 83% for 10 m spatial resolution. While the object-based has some advantages: high homogeneity (absence of mixed pixels), clear and sharp boundary among classes, and high accuracy (97% for 10 m spatial resolution), although it was still found errors in some classes. ABSTRAKProgram Polarimetric Interferometric Airborne Synthetic Aperture Radar of L-band version 2 (PiSAR-L2) adalah program eksperimen sensor Phased-Array Synthetic Aperture RADAR-2 (PALSAR-2) yang dipasang pada satelit Advanced Land Observing Satellite-2 (ALOS-2). Kerjasama riset telah dilakukan antara JAXA dan Kementerian Riset dan Teknologi pada 2012 untuk mengkaji kemampuan data PiSAR L-2 yang direkam menggunakan pesawat untuk beberapa aplikasi. Kegiatan ini menggunakan data PiSAR L-2 untuk klasifikasi penutup lahan di wilayah hutan dengan metode klasifikasi berbasis piksel dan berbasis obyek, kemudian membandingkan kedua metode tersebut. Data yang digunakan adalah data PiSAR L-2 polarisasi penuh dengan level 2.1 untuk wilayah Provinsi Riau. Data lapangan diperoleh dari survei lapangan tim JAXA dan peta penutup lahan dari World Wildlife Fund dijadikan sebagai referensi untuk sampel masukan dan pengujian. Pengolahan awal melakukan konversi backscatter dan filtering, kemudian melakukan klasifikasi dan uji akurasi. Dua metode klasifikasi yang digunakan, 1) Metode Maximum Likelihood Enhance Neighbor classifier untuk klasifikasi berbasis piksel dan 2) Metode Support Vector Machine untuk klasifikasi berbasis obyek. Pada kegiatan ini dilakukan analisis pengaruh resolusi spasial terhadap hasil klasifikasi. Hasil memperlihatkan bahwa metode berbasis piksel mempunyai piksel bercampur “salt and pepper”, akurasi klasifikasi adalah 62% untuk spasial resolusi 2.5 m dan 83% untuk spasial resolusi 10 m. Sedangkan klasifikasi berbasis obyek mempunyai kelebihan dengan homogenitas obyek yang tinggi (tidak adanya piksel bercampur), batas antara kelas yang jelas dan tegas, serta akurasi yang tinggi (97% untuk resolusi spasial 10 m), walau masih ada kesalahan pada beberapa kelas penutup lahan.
DETERMINATION OF FOREST AND NON-FOREST IN SERAM ISLAND MALUKU PROVINCE USING MULTI-YEAR LANDSAT DATA Kartika, Tatik; Carolita, Ita; Manalu, Johannes
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 13, No 1 (2016)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1331.633 KB) | DOI: 10.30536/j.ijreses.2016.v13.a2699

Abstract

Seram Island is one of the islands in Maluku Province. Forest in Seram Island still exists because there is Manusela National Park, but they should be monitored. The forest and non-forest information is usually obtained through the classification process from single remote sensing data, but in certain places in Indonesia it is difficult enough to get  single Landsat data with cloud free, so annual mosaic was used. The aim of this research was to analyze the stratification zone, their indices and thresholds to get spatial information of annual forest area in Seram Island using multi-year Landsat Data. The method consists of four stages: 1) analyzing the base probability result for determination of stratification zone 2) determining the annual forest probability by applying indices from stage-I, 3) determining the spatial information of forest and non-forest annual phase-I by searching the lowest boundary of forest probability, and 4) determining the spatial information of forest and non-forest annual phase-II using the method of permutation of three data and multi-year forest rules. The results of this study indicated that Seram Island  could be coumpond into one stratification zone with three indices. The index equations were B2+B3-2B for index-1, B3+B4 for index-2, and -B3+B4 for index-3.   The threshold  of  index 1, 2, and 3 ranged between -60 and 0, 61 and 104, and 45 and 105, respectively. The lowest boundary  of forest probability in Seram Island since 2006 to 2012 have a range between 46% and 60%. The last result was the annual forest spatial information phase II where the missing data on the forest spatial information phase I decreased. The information is very important to analyze forest area change, especially in Seram Island. 
THE EFFECT OF DIFFERENT ATMOSPHERIC CORRECTIONS ON BATHYMETRY EXTRACTION USING LANDSAT 8 SATELLITE IMAGERY Setiawan, Kuncoro Teguh; Marini, Yennie; Manalu, Johannes; Budhiman, Syarif
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 1 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1113.457 KB) | DOI: 10.30536/j.ijreses.2015.v12.a2668

Abstract

Remote sensing technology can be used to obtain information bathymetry. Bathymetric information plays an important role for fisheries, hydrographic and navigation safety. Bathymetric information derived from remote sensing data is highly dependent on the quality of satellite data use and processing. One of the processing to be done is the atmospheric correction process. The data used in this study is Landsat 8 image obtained on June 19, 2013. The purpose of this study was to determine the effect of different atmospheric correction on bathymetric information extraction from Landsat satellite image data 8. The atmospheric correction methods applied were the minimum radiant, Dark Pixels and ATCOR. Bathymetry extraction result of Landsat 8 uses a third method of atmospheric correction is difficult to distinguish which one is best. The calculation of the difference extraction results was determined from regression models and correlation coefficient value calculation error is generated.