Kuncoro Teguh Setiawan, Kuncoro Teguh
Unknown Affiliation

Published : 6 Documents
Articles

Found 6 Documents
Search

STUDY ON POTENTIAL FISHING ZONES (PFZ) INFORMATION BASED ON S-NPP VIIRS AND HIMAWARI-8 SATELLITES DATA Marpaung, Sartono; Prayogo, Teguh; Setiawan, Kuncoro Teguh; Roswintiarti, Orbita
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 15, No 1 (2018)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1341.416 KB)

Abstract

Sea surface temperature (SST) data from S-NPP VIIRS satellite has different spatial resolution with SST data from Himawari-8 satellite. In this study comparative analysis of potential fishing zones information from both satellites has been conducted. The analysis was conducted on three project areas (PA 7, PA 13, PA 19) as a representation Indonesian territorial waters. The data used were daily  for both satellites with a period  time from August 2016 to December 2016. The method used was Single Image Detection (SIED) to detect thermal fronts. Method of mass center point for determining potential fishing zones coordinate point from result thermal front detection. Furthermore, an analysis of overlapping was done to compare the coordinate point information from both satellites. Based on data analysis that had been done, the result showed that potential fishing zones coordinate points of Himawari-8 satellite was mostly far from potential fishing zones coordinate point of S-NPP VIIRS. The coordinate points whose positionswere close together or nearly same from both satellites was only about 20 %. Differences in potential fishing zones coordinate positions occur due to the effect of different spatial resolutions of both satellite data and the size of the front thermal events that had high variability. The ideal potential fishing zones coordinate points information was probably a combination of the potential fishing zones coordinate points of S-NPP VIIRS and Himawari-8 by making two adjacent coordinate points to be a single coordinate point. Field validation testing was required to prove the accuracy of the coordinate point.
APPLICATION OF VAN HENGEL AND SPITZER ALGORITHM FOR INFORMATION ON BATHYMETRY EXTRACTION USING LANDSAT DATA Setiawan, Kuncoro Teguh; Adawiah, Syifa Wismayati; OSAWA, Takahiro; Nuarsa, I. Wayan
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 1 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (886.148 KB)

Abstract

Remote sensing technology provides an opportunity for effective and efficient bathymetry mapping, especially in areas which level of depth changes quickly. Bathymetry information is very useful for hydrographic and shipping safety. Landsat medium resolution satellite imagery can be used for the extraction of bathymetry information. This study aims to extract information from the Landsat bathymetry by using Van Hengel and Spitzer rotation algorithm transformation (1991) in the water of Menjangan Island, Bali. This study shows that Van Hengel and Spitzer rotation algorithm transformation (1991) can be used to extract information on the bathymetry of Menjangan Island. Extraction of bathymetric information generated from Landsat TM imagery data in March 19, 1997 had shown the depth interval of (-0.6) m to (-12.3) m and R2 value of 0.671. While Data LANDSAT ETM + dated June 23, 2000 resulted in depth interval of 0 m to (-19.1) m and R2 value of 0.796. Furthermore, data LANDSAT ETM + dated March 12, 2003 resulted in depth interval of 0 m to (-22.5) m and R2 value of 0.931.
ESTIMASI BATIMETRI DARI DATA SPOT 7 STUDI KASUS PERAIRAN GILI MATRA NUSA TENGGARA BARAT Setiawan, Kuncoro Teguh; Manessa, Masita Dwi Mandini; Winarso, Gathot; Anggraini, Nanin; Girrastowo, Gigih; Astriningrum, Wikanti; Herianto, Herianto; Rosid, Syamsu; Supardjo, A. Harsono
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 15 No. 2 Desember 2018
Publisher : Indonesian National Institute of Aeronautics and Space (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (618.853 KB)

Abstract

Indonesia merupakan negara kepulauan dengan ribuan pulau besar dan kecil yang memliki perairan laut dangkal. Salah satu informasi yang dibutuhkan dari pulau-pulau tersebut adalah peta batimetri khususnya diperairan laut dangkal. Informasi tersebut masih sangat terbatas pada skala yang besar untuk skala yang lebih detil masih sangat terbatas. Untuk menyelesaikan permasalahan tersebut dibutuhkan teknogi penginderaan jauh. Salah satu pemanfaatan teknologi penginderaan jauh adalah untuk menghasilkan informasi batimetri. Banyak metode yang dapat digunakan untuk menghasilkan informasi batimetri dengan teknologi tersebut. Metode yang digunakan dalam penelitian ini adalah metode regresi linier berganda (MLR) yang dikembangkan oleh Lyzenga, 2006. Data yang akan di gunakan adalah citra satelit SPOT 7 di Perairan Laut Dangkal Gili Trawangan, Gili Meno dan Gili Air Pulau Lombok Provinsi Nusa Tenggara Barat. Metode penentuan batimetri tersebut dilakukan pada data kedalaman insitu dengan melakukan dua modifikasi yaitu yang pertama dengan tidak memperhatikan jenis objek habitat dasar dan yang kedua memperhatikan objek habitat dasar karang, lamun, makroalga dan substrat.Hasil dari penelitian ini memberikan korelasi R2 yang meningkat dari 0,721 menjadi 0,786 serta penuruanan nilai kesalahan RMSE dari 3,3 meter menjadi 2,9 meter.
BATHYMETRY DATA EXTRACTION ANALYSIS USING LANDSAT 8 DATA Setiawan, Kuncoro Teguh; Adawiah, Syifa Wismayati; Marini, Yennie; Winarso, Gathot
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 13, No 2 (2016)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (430.643 KB)

Abstract

The remote sensing technique can be used to produce bathymetric map. Bathymetric mapping is important for the coastal zone and watershed management. In the previous study conducted in Menjangan Island of Bali, bathymetric extractin information from the top of the atmosphere (TOA) reflectance image of Landsat ETM+  data has R2 = 0.620. Not optimal  correlation value produced is highly influenced by the reflectance image of Landsat ETM+ data, were used, hence the lack of the research which became the basis of the present study. The study was on the Karang Lebar water of Thousand Islands, Jakarta. And the aim was to determine whether there was an increased correlation coefficient value of bathymetry extraction information generated from Surface reflectance and TOA reflectance imager of Landsat 8 data acquired on August 12, 2014. The method of extraction was done using algorithms Van Hengel and Spitzer (1991). Extraction   absolute depth information obtained from the model logarithm of Landsat 8 surface reflectance images and pictures TOA produce a correlation value of R2 = 0.663 and R2 = 0.712.
UTILIZATION OF SAR AND EARTH GRAVITY DATA FOR SUB BITUMINOUS COAL DETECTION Julzarika, Atriyon; Setiawan, Kuncoro Teguh
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1297.886 KB)

Abstract

Remote sensing data can be used for geological and mining applications, such as coal detection. Coal consists of five classes of Anthracite, Bituminous, Sub-Bituminous, Lignite coal and Peat coal. In this study, the type of coal that is discussed is Sub bituminous, Lignite coal, and peat coal. This study aims to detect potential sub bituminous using Synthetic Aperture Radar (SAR) data, and earth gravity. One type of remote sensing data to detect potential sub bituminous, lignite coal and peat coal are SAR data and satellite data Geodesy. SAR data used in this study is ALOS PALSAR. SAR data is used to predict the boundary between Lignite coal with Peat coal. The method used is backscattering. In addition to the SAR data is also used to make height model. The method used is interferometry. Geodetic satellite data is used to extract the value of the earth gravity and geodynamics. The method used is physical geodesy. Potential sub-bituminous coal can be known after the correlation between the predicted limits lignite coal-peat coal by the earth gravity, geodynamics, and height model. Volume predictions of potential sub bituminous can be known by calculating the volume using height model and transverse profile test. The results of this study useful for preliminary survey of geological in mining exploration activities.
THE EFFECT OF DIFFERENT ATMOSPHERIC CORRECTIONS ON BATHYMETRY EXTRACTION USING LANDSAT 8 SATELLITE IMAGERY Setiawan, Kuncoro Teguh; Marini, Yennie; Manalu, Johannes; Budhiman, Syarif
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 1 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1113.457 KB)

Abstract

Remote sensing technology can be used to obtain information bathymetry. Bathymetric information plays an important role for fisheries, hydrographic and navigation safety. Bathymetric information derived from remote sensing data is highly dependent on the quality of satellite data use and processing. One of the processing to be done is the atmospheric correction process. The data used in this study is Landsat 8 image obtained on June 19, 2013. The purpose of this study was to determine the effect of different atmospheric correction on bathymetric information extraction from Landsat satellite image data 8. The atmospheric correction methods applied were the minimum radiant, Dark Pixels and ATCOR. Bathymetry extraction result of Landsat 8 uses a third method of atmospheric correction is difficult to distinguish which one is best. The calculation of the difference extraction results was determined from regression models and correlation coefficient value calculation error is generated.