Kuncoro Teguh Setiawan, Kuncoro Teguh
Unknown Affiliation

Published : 9 Documents
Articles

Found 9 Documents
Search

STUDY ON POTENTIAL FISHING ZONES (PFZ) INFORMATION BASED ON S-NPP VIIRS AND HIMAWARI-8 SATELLITES DATA Marpaung, Sartono; Prayogo, Teguh; Setiawan, Kuncoro Teguh; Roswintiarti, Orbita
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 15, No 1 (2018)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2018.v15.a2817

Abstract

Sea surface temperature (SST) data from S-NPP VIIRS satellite has different spatial resolution with SST data from Himawari-8 satellite. In this study comparative analysis of potential fishing zones information from both satellites has been conducted. The analysis was conducted on three project areas (PA 7, PA 13, PA 19) as a representation Indonesian territorial waters. The data used were daily  for both satellites with a period  time from August 2016 to December 2016. The method used was Single Image Detection (SIED) to detect thermal fronts. Method of mass center point for determining potential fishing zones coordinate point from result thermal front detection. Furthermore, an analysis of overlapping was done to compare the coordinate point information from both satellites. Based on data analysis that had been done, the result showed that potential fishing zones coordinate points of Himawari-8 satellite was mostly far from potential fishing zones coordinate point of S-NPP VIIRS. The coordinate points whose positionswere close together or nearly same from both satellites was only about 20 %. Differences in potential fishing zones coordinate positions occur due to the effect of different spatial resolutions of both satellite data and the size of the front thermal events that had high variability. The ideal potential fishing zones coordinate points information was probably a combination of the potential fishing zones coordinate points of S-NPP VIIRS and Himawari-8 by making two adjacent coordinate points to be a single coordinate point. Field validation testing was required to prove the accuracy of the coordinate point.
APPLICATION OF VAN HENGEL AND SPITZER ALGORITHM FOR INFORMATION ON BATHYMETRY EXTRACTION USING LANDSAT DATA Setiawan, Kuncoro Teguh; Adawiah, Syifa Wismayati; OSAWA, Takahiro; Nuarsa, I. Wayan
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 1 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2014.v11.a2603

Abstract

Remote sensing technology provides an opportunity for effective and efficient bathymetry mapping, especially in areas which level of depth changes quickly. Bathymetry information is very useful for hydrographic and shipping safety. Landsat medium resolution satellite imagery can be used for the extraction of bathymetry information. This study aims to extract information from the Landsat bathymetry by using Van Hengel and Spitzer rotation algorithm transformation (1991) in the water of Menjangan Island, Bali. This study shows that Van Hengel and Spitzer rotation algorithm transformation (1991) can be used to extract information on the bathymetry of Menjangan Island. Extraction of bathymetric information generated from Landsat TM imagery data in March 19, 1997 had shown the depth interval of (-0.6) m to (-12.3) m and R2 value of 0.671. While Data LANDSAT ETM + dated June 23, 2000 resulted in depth interval of 0 m to (-19.1) m and R2 value of 0.796. Furthermore, data LANDSAT ETM + dated March 12, 2003 resulted in depth interval of 0 m to (-22.5) m and R2 value of 0.931.
ESTIMASI BATIMETRI DARI DATA SPOT 7 STUDI KASUS PERAIRAN GILI MATRA NUSA TENGGARA BARAT Setiawan, Kuncoro Teguh; Manessa, Masita Dwi Mandini; Winarso, Gathot; Anggraini, Nanin; Girrastowo, Gigih; Astriningrum, Wikanti; Herianto, Herianto; Rosid, Syamsu; Supardjo, A. Harsono
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 15 No. 2 Desember 2018
Publisher : Indonesian National Institute of Aeronautics and Space (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.pjpdcd.2018.v15.a3008

Abstract

Indonesia merupakan negara kepulauan dengan ribuan pulau besar dan kecil yang memliki perairan laut dangkal. Salah satu informasi yang dibutuhkan dari pulau-pulau tersebut adalah peta batimetri khususnya diperairan laut dangkal. Informasi tersebut masih sangat terbatas pada skala yang besar untuk skala yang lebih detil masih sangat terbatas. Untuk menyelesaikan permasalahan tersebut dibutuhkan teknogi penginderaan jauh. Salah satu pemanfaatan teknologi penginderaan jauh adalah untuk menghasilkan informasi batimetri. Banyak metode yang dapat digunakan untuk menghasilkan informasi batimetri dengan teknologi tersebut. Metode yang digunakan dalam penelitian ini adalah metode regresi linier berganda (MLR) yang dikembangkan oleh Lyzenga, 2006. Data yang akan di gunakan adalah citra satelit SPOT 7 di Perairan Laut Dangkal Gili Trawangan, Gili Meno dan Gili Air Pulau Lombok Provinsi Nusa Tenggara Barat. Metode penentuan batimetri tersebut dilakukan pada data kedalaman insitu dengan melakukan dua modifikasi yaitu yang pertama dengan tidak memperhatikan jenis objek habitat dasar dan yang kedua memperhatikan objek habitat dasar karang, lamun, makroalga dan substrat.Hasil dari penelitian ini memberikan korelasi R2 yang meningkat dari 0,721 menjadi 0,786 serta penuruanan nilai kesalahan RMSE dari 3,3 meter menjadi 2,9 meter.
BATHYMETRY DATA EXTRACTION ANALYSIS USING LANDSAT 8 DATA Setiawan, Kuncoro Teguh; Adawiah, Syifa Wismayati; Marini, Yennie; Winarso, Gathot
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 13, No 2 (2016)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2016.v13.a2448

Abstract

The remote sensing technique can be used to produce bathymetric map. Bathymetric mapping is important for the coastal zone and watershed management. In the previous study conducted in Menjangan Island of Bali, bathymetric extractin information from the top of the atmosphere (TOA) reflectance image of Landsat ETM+  data has R2 = 0.620. Not optimal  correlation value produced is highly influenced by the reflectance image of Landsat ETM+ data, were used, hence the lack of the research which became the basis of the present study. The study was on the Karang Lebar water of Thousand Islands, Jakarta. And the aim was to determine whether there was an increased correlation coefficient value of bathymetry extraction information generated from Surface reflectance and TOA reflectance imager of Landsat 8 data acquired on August 12, 2014. The method of extraction was done using algorithms Van Hengel and Spitzer (1991). Extraction   absolute depth information obtained from the model logarithm of Landsat 8 surface reflectance images and pictures TOA produce a correlation value of R2 = 0.663 and R2 = 0.712.
UTILIZATION OF SAR AND EARTH GRAVITY DATA FOR SUB BITUMINOUS COAL DETECTION Julzarika, Atriyon; Setiawan, Kuncoro Teguh
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2014.v11.a2612

Abstract

Remote sensing data can be used for geological and mining applications, such as coal detection. Coal consists of five classes of Anthracite, Bituminous, Sub-Bituminous, Lignite coal and Peat coal. In this study, the type of coal that is discussed is Sub bituminous, Lignite coal, and peat coal. This study aims to detect potential sub bituminous using Synthetic Aperture Radar (SAR) data, and earth gravity. One type of remote sensing data to detect potential sub bituminous, lignite coal and peat coal are SAR data and satellite data Geodesy. SAR data used in this study is ALOS PALSAR. SAR data is used to predict the boundary between Lignite coal with Peat coal. The method used is backscattering. In addition to the SAR data is also used to make height model. The method used is interferometry. Geodetic satellite data is used to extract the value of the earth gravity and geodynamics. The method used is physical geodesy. Potential sub-bituminous coal can be known after the correlation between the predicted limits lignite coal-peat coal by the earth gravity, geodynamics, and height model. Volume predictions of potential sub bituminous can be known by calculating the volume using height model and transverse profile test. The results of this study useful for preliminary survey of geological in mining exploration activities.
THE EFFECT OF DIFFERENT ATMOSPHERIC CORRECTIONS ON BATHYMETRY EXTRACTION USING LANDSAT 8 SATELLITE IMAGERY Setiawan, Kuncoro Teguh; Marini, Yennie; Manalu, Johannes; Budhiman, Syarif
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 1 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2015.v12.a2668

Abstract

Remote sensing technology can be used to obtain information bathymetry. Bathymetric information plays an important role for fisheries, hydrographic and navigation safety. Bathymetric information derived from remote sensing data is highly dependent on the quality of satellite data use and processing. One of the processing to be done is the atmospheric correction process. The data used in this study is Landsat 8 image obtained on June 19, 2013. The purpose of this study was to determine the effect of different atmospheric correction on bathymetric information extraction from Landsat satellite image data 8. The atmospheric correction methods applied were the minimum radiant, Dark Pixels and ATCOR. Bathymetry extraction result of Landsat 8 uses a third method of atmospheric correction is difficult to distinguish which one is best. The calculation of the difference extraction results was determined from regression models and correlation coefficient value calculation error is generated.
Pemanfaatan Data Penginderaan Jauh untuk Ekstraksi Habitat Perairan Laut Dangkal di Pantai Pemuteran, Bali, Indonesia Purwanto, Anang Dwi; Setiawan, Kuncoro Teguh; Ginting, Devica Natalia Br.
Jurnal Kelautan Tropis Vol 22, No 2 (2019): JURNAL KELAUTAN TROPIS
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (381.698 KB) | DOI: 10.14710/jkt.v22i2.5092

Abstract

Indonesia had a large diversity of coastal ecosystems. One part of the them is the coral reef. The concept of mapping coral reef ecosystems has been outlined in the RSNI document about the mapping of shallow marine waters. The aim of this study is to map shallow marine waters using the 1981 and 2006 lyzenga methods. The mapping was made based on three classes including coral reef, mixed seagrass and macroalgae, and substrate. The location of the study was conducted at Pemuteran Beach, Bali. The data used were Landsat 8 imagery acquisition on 14 April 2018. Stages of data processing include atmospheric correction, radiometric correction, pansharpening, masking, cropping, and water column correction and classification. Water column correction used the Lyzenga 1981 and 2006. Classification methods to distinguish objects of shallow marine waters using the unsupervised method. The results showed differences in the results of extraction of shallow marine waters information using the Lyzenga 1981 with the 2006 Lyzenga method. The extraction results with the Lyzenga 2006 method provide more detailed information in identifying the three classes of shallow marine waters. Indonesia memiliki keanekaragaman ekosistem pesisir yang cukup besar. Salah satu bagian dari ekosistem tersebut adalah ekosistem terumbu karang. Konsep pemetaan ekosistem terumbu karang telah dituangkan dalam RSNI tentang pemetaan habitat dasar perairan laut dangkal. Tujuan penelitian ini adalah untuk melakukan pemetaan habitat perairan laut dangkal dengan menggunakan metode lyzenga 1981 dan 2006.  Pemetaan tersebut dibuat berdasarkan tiga kelas diantaranya: kelas terumbu karang, kelas campuran padang lamun dan makro alga, serta kelas substrat dasar. Lokasi penelitian dilaksanakan di Pantai Pemuteran, Bali. Data yang digunakan adalah citra Landsat 8 akuisisi 14 April 2018. Tahapan pengolahan data meliputi, koreksi atmosferik, koreksi radiometrik, proses pansharpening, proses masking darat air, cropping, serta koreksi kolom air serta klasifikasi. Koreksi kolom air menggunakan metode Lyzenga 1981 dan 2006. Klasifikasi untuk membedakan obyek habitat perairan laut dangkal menggunakan metode unsupervised . Hasil penelitian menunjukkan adanya perbedaan hasil ekstraksi informasi habitat perairan laut dangkal menggunakan metode Lyzenga 1981 dengan metode Lyzenga 2006. Hasil ekstraksi dengan metode Lyzenga 2006 memberikan informasi yang lebih detail dalam mengidentifikasi tiga kelas habitat perairan laut dangkal tersebut.
DETEKSI AWAL HABITAT PERAIRAN LAUT DANGKAL MENGGUNAKAN TEKNIK OPTIMUM INDEX FACTOR PADA CITRA SPOT 7 DAN LANDSAT 8 Purwanto, Anang Dwi; Setiawan, Kuncoro Teguh
JURNAL ENGGANO Vol 4, No 2
Publisher : Universitas Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (934.567 KB) | DOI: 10.31186/jenggano.4.2.174-192

Abstract

Informasi keberadaan habitat perairan laut dangkal semakin dibutuhkan terutama dalam kegiatan pelestarian lingkungan dan monitoring di wilayah pesisir. Komponen penyusun ekosistem habitat dasar perairan laut dangkal di antaranya terumbu karang dan lamun dimana lokasi keberadaan obyek habitat ini cenderung berdekatan. Dalam interpretasi ekosistem habitat dasar perairan laut dangkal terkendala oleh lokasi keberadaan ekosistem yang berasosiasi dengan obyek lainnya. Tujuan penelitian ini adalah menentukan kombinasi komposit kanal terbaik dalam mengidentifikasi obyek habitat dasar perairan laut dangkal di Pantai Pemuteran, Bali. Data citra satelit yang digunakan dalam penelitian ini adalah citra SPOT 7 akuisisi tanggal 11 April 2018 dan citra Landsat 8 akuisisi tanggal 14 April 2018, sedangkan data terkait informasi sebaran habitat dasar perairan laut dangkal diperoleh berdasarkan hasil survei lapangan yang telah dilakukan pada tanggal 7-13 April 2018 di Pantai Pemuteran, Bali. Data citra satelit diperoleh dari Pusat Teknologi dan Data LAPAN. Untuk menentukan kombinasi dari 3 (tiga) kanal terbaik dalam interpretasi habitat dasar perairan laut dangkal digunakan metode Optimum Index Factor (OIF) dimana metode ini menggunakan nilai standar deviasi dan koefisien korelasi dari kombinasi 3 (tiga) kanal citra yang digunakan. Hasil penelitian menunjukkan kombinasi komposit 2 (hijau), 3 (merah) dan 4 (NIR) mempunyai nilai OIF tertinggi untuk citra SPOT 7, sedangkan kombinasi komposit 2 (biru), 4 (merah) dan 6 (SWIR 1) Mempunyai nilai OIF tertinggi untuk citra Landsat 8. Interpretasi sebaran habitat dasar perairan laut dangkal dapat dilakukan secara efektif dengan menggunakan citra komposit RGB 423 untuk citra SPOT 7 dan RGB 642 untuk citra Landsat 8.DETECTION OF SHALLOW WATER HABITATS USING OPTIMUM INDEX FACTORS TECHNIQUE ON SPOT 7 AND LANDSAT 8 IMAGERY. Information of the existence of the shallow water habitat is required especially in environmental conservation and monitoring of activities in coastal areas. The component of the shallow water habitat including coral reefs and seagrass where the location of the existence of these relatively close together. Interpretation of the shallow water habitat is constrained by the location of ecosystem associated with other objects. The aim of study is to determine the best combination of band composites in identifying the shallow water habitat in Pemuteran Beach, Bali. The study used SPOT 7 imagery (acquisition on April 11, 2018) and Landsat 8 imagery (acquisition on April 14, 2018). The data of the shallow water habitat based on the result of field survey was conducted on 7-13 April 2018 at Pemuteran Beach, Bali. Image data obtained from Remote Sensing Technology and Data Center of LAPAN. Determination of combination of 3 (three) bands the shallow water habitat using Optimum Index Factor (OIF) method where this method used standard deviation value and correlation coefficient from combination of 3 (three) bands. The results show the composite combinations of band 2 (green), band 3 (red) and band 4 (NIR) have the highest OIF values for SPOT 7 image, while the composite combinations of band 2 (blue), band 4 (red) and band 6 (SWIR 1) have the highest OIF values for Landsat 8 image. Interpretation of distribution of shallow water habitat can be done effectively using RGB 423 composite image (SPOT 7) and RGB 642 composite image (Landsat 8).
BATHYMETRY EXTRACTION FROM SPOT 7 SATELLITE IMAGERY USING RANDOM FOREST METHODS Setiawan, Kuncoro Teguh; Suwargana, Nana; Br. Ginting, Devica Natalia; Manessa, Masita Dwi Mandini; Anggraini, Nanin; Adawiah, Syifa Wismayati; Julzarika, Atriyon; Surahman, Surahman; Rosid, Syamsu; Supardjo, Agustinus Harsono
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 16, No 1 (2019)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2019.v16.a3085

Abstract

The scope of this research is the application of the random forest method to SPOT 7 data to produce bathymetry information for shallow waters in Indonesia. The study aimed to analyze the effect of base objects in shallow marine habitats on estimating bathymetry from SPOT 7 satellite imagery. SPOT 7 satellite imagery of the shallow sea waters of Gili Matra, West Nusa Tenggara Province was used in this research. The estimation of bathymetry was carried out using two in-situ depth-data modifications, in the form of a random forest algorithm used both without and with benthic habitats (coral reefs, seagrass, macroalgae, and substrates). For bathymetry estimation from SPOT 7 data, the first modification (without benthic habitats) resulted in a 90.2% coefficient of determination (R2) and 1.57 RMSE, while the second modification (with benthic habitats) resulted in an 85.3% coefficient of determination (R2) and 2.48 RMSE. This research showed that the first modification achieved slightly better results than the second modification; thus, the benthic habitat did not significantly influence bathymetry estimation from SPOT 7 imagery.