Rame Rame, Rame
Balai Besar Teknologi Pencegahan Pencemaran Industri

Published : 5 Documents
Articles

Found 5 Documents
Search

Sel Elektrolisis 3–Kompartemen untuk Ekstraksi Magnesium dan Sulfat dari Sistem Larutan MgSO4–KCl–H2O Rahmanto, Wasino Hadi; Asy’ari, Mukhammad; Rame, Rame; Marihati, Marihati
Jurnal Kimia Sains dan Aplikasi Vol 9, No 1 (2006): Volume 9 Issue 1 Year 2006
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (71.575 KB) | DOI: 10.14710/jksa.9.1.14-21

Abstract

Extraction of magnesium and sulfate from MgSO4–KCl–H2O solution system of 0.1 M salt concentration has been conducted. The 3–compartment electrolytic cell model was designed to fulfill the purpose. The cell is constructed from aquarium plastic box of 417 mL capacity divided into three compartments. Each compartment is separated by fixed plastic wall. One of the compartment with no electrode (mid compartment) was connected either to anodic (left) and cathodic (right) compartment using double filter paper strip of 2 x 6 (in cm) dimension. Electrolysis was performed in atmospheric environment under the 6 volt external electric potential using 7A Montana power supply. Experimental results show that electrolysis systems provide good separation of magnesium and sulfate from solution. Magnesium in the form of Mg(OH)2 and sulfate as H2SO4 has been obtained in about 92 % yield. Clear solution in the mid compartment show the absence of salt residues; both of cationic and anionic species migrate totally toward cathodic and anodic compartment respectively.
PENGGUNAAN KHAMIR RHODOTORULA MUCILAGINOSA UNTUK BIOSENSOR BOD MENGGUNAKAN ELEKTRODA EMAS Rame, Rame
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol 5, No 2 (2014)
Publisher : Kementerian Perindustrian

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (511.286 KB) | DOI: 10.21771/vol5no2tahun2014artikel937

Abstract

Aplikasi biosensor BOD pada dasarnya meningkat seiring dengan berkembangnya keperluan manusia dan kemajuan IPTEK. Tetapi secara umum tetap didominasi untuk aplikasi dibidang medis dan lingkungan hidup.Biosensor BOD berdasarkan metabolisme khamir dikembangkan dalam rangka mempersingkat waktu pengukuran nilai BOD untuk monitoring lingkungan. Pengembangan biosensor dibuat melalui imobilisasi khamir pada film tipis dalam matrik agarose dengan Nafion sebagai membran untuk proses pertukaran ion. Khamir diambil dari fermentasi Rhodotorula mucilaginosa. Film tipis kemudian dilekatkan pada emas sebagai elektroda kerja. Biosensor BOD  dikalibrasi  menggunakan larutan yang mengandung glukosa yang setara sebagai sampel standar. Kondisi optimum diamati dengan waktu tunggu pengukuran 20 menit pada potensial  500 mV (vs Ag/AgCl). Untuk analisis glukosa, waktu tunggu adalah 20 menit dengan batas deteksi 1 mg/l. Hubungan linier yang baik diperoleh dari larutan standar glukosa yaitu, 2 0.99 dan estimasi kesalahan pengukuran 2,45%. Nilai BOD yang diperoleh dari biosensor menunjukkan perbandingan yang baik dengan konvensional.
PENGARUH WAKTU KONTAK TERHADAP DAYA ADSORPSI KARBON AKTIF PADA PROSES PURIFIKASI CH4 DARI BIOGAS Harihastuti, Nani; Djayanti, Silvy; Rame, Rame
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol 7, No 2 (2016)
Publisher : Kementerian Perindustrian

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3174.126 KB) | DOI: 10.21771/vol7no2tahun2016artikel926

Abstract

ABSTRAK Penggunaan biogas sebagai bahan bakar secara langsung sering menimbulkan permasalahan yaitu terjadi bau tidak sedap, peralatan logam  dan kompor cepat berkarat, dinding dapur terkikis  dan api sering  padam sendiri. Hal ini disebabkan dalam biogas selain metana (CH4) terkandung gas-gas lain H2S, NH3, CO2, H2 , CO dan uap air (H2O). Beberapa gas yang bersifat impurities ( H2S, NH3, CO2 dan uap air /H2O) akan menurunkan nilai kalori dari biogas dan merugikan lingkungan dan kesehatan. Tujuan dari penelitian ini adalah untuk menghilangkan gas impurities dari biogas melalui proses purifikasi sehingga diperoleh biogas yang mempunyai nilai kalor tinggi dan ramah lingkungan.Metode yang dilakukan dengan proses adsorpsi menggunakan  adsorben karbon aktif dengan variabel waktu kontak, untuk mendapatkan daya adsorpsi yang optimum dari karbon aktif terhadap gas impurities yang ada dalam biogas. Hasil penelitian ini diperoleh data- data              penghilangan / reduksi gas  impuritis H2S mencapai 99,99% , dari 4200 ppm menjadi 0,22 ppm, penghilangan gas NH3 mencapai 94,96%, dari 12,7 ppm menjadi 0,65 ppm, penghilangan gas CO2 mencapai 77,48 %, dari 30, 77 % menjadi 6,93 %, penghilangan uap air (H2O) mencapai 97,95%,  dari 0,584 mg/lt menjadi 0,012 mg/lt.Kenaikan konsentrasi methane (CH4) dari 38,2 % menjadi 84,12 %. Hasil purifikasi metana (CH4) dari biogas ini merupakan sumber energi  terbarukan yang aman dan  ramah lingkungan serta dapat di kembangkan lagi penerapannya di IKM tahu lainnya. Waktu jenuh adsorben karbon aktif diperoleh setelah  48 jam proses purifikasi berlangsung. Daya adsorpsi Karbon aktif optimum terhadap masing masing komponen gas impuritis adalah sebagai berikut terhadap H2S adalah  10,98 mg H2S/gram karbon aktif/menit, terhadap NH3  adalah 0,016 mg NH3/gram karbon aktif/menit, terhadap CO2 adalah 0,090mg CO2/gram karbon aktif/menit.Dampak yang terjadi bila biogas tidak dimanfaatkan dan dibiarkan terlepas ke udara , maka dapat memicu efek gas rumah kaca dan pemanasan global karena biogas mengandung gas  CH4 dan CO2 yang sangat signifikan jumlahnya. Kata Kunci : waktu kontak, adsorpsi, karbon aktif, purifikasi,biogas ABSTRACT The use of biogas as a fuel directly use often problem occur that is awful odor, equipment fast burner and rusted metal, kitchen walls eroded and fire often turns off its self. This is due in a biogas other than methane (CH4) contained other gases, H2S, NH3, CO2, H2, CO and water vapor (H2O). Some gases which are impurities (H2S, NH3, CO2 and water vapor/H2O) will lower the value of calories from biogas and detrimental to the environment and health. The purpose of this research is to eliminate impurities from gases biogas through a process of purification until obtained biogas which has higher heat value and enviromental friendly. The Methods undertaken by adsorption process using adsorbent activated carbon with variable time contacts, to obtain the optimum adsorption power of activated carbon toward gas impurities that are present in wastewater. The results of this research were obtained data removal/reduction of H2S gas impuritis achieve 99.99%, from 4200 ppm to be 0.22 ppm NH3 gas removal, reach the 12.7%, from 94,96 ppm be 0.65 ppm, removal of CO2 gas reached 77.48%, from levels 30, 77% to 6.93%, removal of water vapour (H2O) reached 97,95%, from 0.584 mg/l be 0.012 mg/l.The increase in the concentration of methane (CH4) from 38.2% to 84.12%. Results of methane (CH4) as a result of this biogas is renewable energy sources that are safe and environmentally friendly and can be developed  in other Tofu IKM. The Time saturated activated carbon adsorbents obtained after 48 hours, the process of purification occur. Optimum active Carbon adsorption power towards each component gas impuritis is as follows against the H2S is 10.98 mg H2S/gram of activated carbon/minute, against the NH3 is 0.016 mg NH3/gram of activated carbon/minute, against CO2 is 0.090mg activated carbon/gram CO2/minute.The impact when biogas is not utilized and left aside in the air, then it can trigger the effect of greenhouse gases and global warming due to biogas containing gases CH4 and CO2 are a very significant number. Keywords: contact time, adsorption, activated carbon, purification, biogas 
High Performance of Enzymatic Bioprocess for Production of Biomassed-based Bioethanol of Sago Palm Fiber Waste Harihastuti, Nani; Rame, Rame; Djayanti, Silvy
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol 9, No 2 (2018)
Publisher : Kementerian Perindustrian

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3089.92 KB) | DOI: 10.21771/jrtppi.2018.v9.no2.p37-45

Abstract

Biomass waste in the form of fiber dregs contains many components of lignocellulose and hemicellulose. Lignocellulose can be used to produce ethanol through enzymatic biotechnology processes. Sago palm fiber industry is one potential industry producing biomass waste in the form of solid waste of fiber dregs (about 30% from the weight of processed raw materials). Solid fiber waste contains crude fiber and lignocellulose compound consists of cellulose (35-50%), hemicellulose ( 20-35%) and lignin (12-20%). This study aimed to utilize solid waste of sago palm fiber as a raw material of bioethanol production through enzymatic biotechnology processes of delignification, saccharification and fermentation which was then purified by distillation process to get ethanol. Delignification,  saccharification, and fermentation stages are conducted using Phanerochaete chrysosporus Mushroom, Trichoderma viride fungus, and saccharomyces cerevisiae, respectively and then purified by distillation process (one level) to produce ethanol. The process of saccharification and fermentation process were done in an integrated manner (addition of Trichoderma viride and yeast saccharomyces cereviceae fungi done simultaneously). The weight of raw materials of solid waste fiber treated was about 6 kgs. Alcohol content obtained was about ± 4% (distillation). No water, air, and soil pollution inflicted, more added value, and sustainable were the main benefits of biotech process or bioprocess.
Efficient Cell-Wall Disruption of Microalgae Chlorella Vulgaris in water by catalytic ozonation over Microporous Carbon-Supported Titanium Oxide Rame, Rame; Nilawati, Nilawati; Silvy Djayanti, Silvy; Irnaning Handayani, Novarina; Purwanto, Agus; Ruliaty, Lisa; Dwi Harjanto, Ganang
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol 9, No 2 (2018)
Publisher : Kementerian Perindustrian

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (376.305 KB) | DOI: 10.21771/jrtppi.2018.v9.no2.p30-36

Abstract

This study investigated several parameters for cell-wall disruption from microalgae Chlorella vulgaris during catalytic ozonation over microporous carbon-supported titanium oxide, including flow ozone, catalytic time, and reactor capacity. At the same time, the cell-wall disruption yield and an active compound yield such as chlorophyll and carotenoid were evaluated for each pretreatment. The required delivered flow ozone to achieve 76,47% cell-wall disruption of Chlorella vulgaris was 1 minute at 4 LPM, which produced chlorophyll 56,75% and carotenoid 89,09%. Carbon-supported titanium oxide reduces the required O3 dose and catalytic time for cell-wall disruption; however, it limited chlorophyll yield did not exceed 75,67%. Pretreatment with 1 minute at 1 LPM in 2 liters produced carotenoid yield by approximately 98,18%, though it reduced chlorophyll to 59,45%.