Khoiriya Latifah, Khoiriya
Prodi Informatika Fakultas Teknik Universitas PGRI Semarang

Published : 10 Documents
Articles

Found 10 Documents
Search

Kombinasi Algorithma K-NN dan Manhattan Distance untuk Menentukan Pemenang Lelang Latifah, Khoiriya
Jurnal Informatika Upgris Vol 1, No 1 Juni: (2015)
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/jiu.v1i1 Juni.800

Abstract

Penentuan pemenang lelang adalah masalah non linier (yang banyak dipengaruhi oleh faktor alam dan lingkungan ) dan merupakan keputusan manajerial ( alamiah merupakan keputusan kualitatif)sehingga memerlukan pengetahuan untuk melakukan penilaian terhadap pemenang lelang. Di dalam Industri konstruksi atau infrastruktur terdapat sekumpulan informasi yang dapat digali dan dikembangkan demi kemajuan industri tersebut dengan menggunakan metode Data Mining. Data mining dikelompokkan dalam dua kategori, yakni supervised dan unsupervised. Algoritma k-Nearest Neighbor (k-NN) adalah suatu metode yang menggunakan algoritma supervised, dimana hasil dari sampel uji yang baru diklasifikasikan berdasarkan mayoritas dari kategori pada k-NN. Penelitian ini dilakukan untuk mengkaji tentang Algoritma k-NN dan kemudian mengaplikasikan Algoritma k-NN dalam klasifikasi data. Variabel penilian diperoleh dari hasil kuisioner kepada para pemenang lelang dan data dari cipta karya. Dari hasil experiment diperoleh precision recal accuracy dan F.Measure semua diatas 0,8 artinya system prediksi berhasil dengan baik untuk memprediksi pemenang lelang dengan metode prakualifikasi
Pembuatan Pangkalan Data Elektronik Kelurahan Muktiharjo Kidul Pedurungan Semarang Wibowo, Setyoningsih; Latifah, Khoiriya; Nada, Noora Qotrun
Jurnal Informatika Upgris Vol 2, No 1: JUNI (2016)
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/jiu.v2i1.1064

Abstract

Abstract - The advancement of information technology and communication affect the development of storage technology (archival) where archives have an important role in every organization, as well as government and private offices. This research aims to design a system that is easily understood and implemented to help device performance villages become more effective and efficient. This research works preliminary study in the design manufacture electronic database. The subjects of this study is Muktiharjo Kidul village Pedurungan Semarang. This research object is the manufacture of electronic database. The technique used in this study using a system called the System Development Life Cycle (SDLC) is the process of making and editing systems as well as the models and methods used to develop the system. The result of this research is the creation of an electronic database system and the system has been designed to facilitate the performance of the device and can diimplentasikan village well. Based on the results of this study concluded created database aplication can be used to handle the data entry process, data changes, deletions and population data search. Keywords: database, SDLC, Muktiharjo Kidul, access
Kombinasi Algorithma K-NN dan Manhattan Distance untuk Menentukan Pemenang Lelang Latifah, Khoiriya
JIU Vol 1, No 1 Juni (2015): informatika
Publisher : JIU

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penentuan pemenang lelang adalah masalah non linier (yang banyak dipengaruhi oleh faktor alam dan lingkungan ) dan merupakan keputusan manajerial ( alamiah merupakan keputusan kualitatif)sehingga memerlukan pengetahuan untuk melakukan penilaian terhadap pemenang lelang. Di dalam Industri konstruksi atau infrastruktur terdapat sekumpulan informasi yang dapat digali dan dikembangkan demi kemajuan industri tersebut dengan menggunakan metode Data Mining. Data mining dikelompokkan dalam dua kategori, yakni supervised dan unsupervised. Algoritma k-Nearest Neighbor (k-NN) adalah suatu metode yang menggunakan algoritma supervised, dimana hasil dari sampel uji yang baru diklasifikasikan berdasarkan mayoritas dari kategori pada k-NN. Penelitian ini dilakukan untuk mengkaji tentang Algoritma k-NN dan kemudian mengaplikasikan Algoritma k-NN dalam klasifikasi data. Variabel penilian diperoleh dari hasil kuisioner kepada para pemenang lelang dan data dari cipta karya. Dari hasil experiment diperoleh precision recal accuracy dan F.Measure semua diatas 0,8 artinya system prediksi berhasil dengan baik untuk memprediksi pemenang lelang dengan metode prakualifikasi
INTEGRASI SOFTWARE CAD-CAM DALAM SISTEM OPERASI MESIN BUBUT CNC Setyoadi, Yuris; Latifah, Khoiriya
JIU Vol 1, No 2 Desember (2015)
Publisher : JIU

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Computer Aided Manufacturing (CAM)) adalah sebuah teknologi aplikasi yang menggunakan perangkat lunak komputer dan mesin untuk memfasilitasi dan mengotomatisasi proses manufaktur. Computer Aided Manufacturing (CAM)) adalah penerus dari Computer Aided Engineering (CAE) dan sering digunakan bersama dengan Computer-Aided Design (CAD). Bidang manufaktur, perangkat komputer telah dipergunakan untuk mengontrol mesin-mesin produksi otomatis dengan ketepatan tinggi, misalnya mesin CNC.  Artikel ini membahas tentang penggunaan software CAD-CAM (SOLIDWorks dan CAMWorks yang terintegrasi) kemudian diaplikasikan ke mesin bubut CNC yang menggunakan software Mach3, Mach3 adalah software yang bisa mengubah komputer dekstop menjadi sebuah piranti kontroller mesin CNC. Software SOLIDWorks, CAMWorks dan Mach3 diintegrasikan ke dalam sistem operasi mesin bubut CNC sehingga proses koreksi dan modifikasi format perintah gerakan dalam G/M code dapat dilakukan dalam software tersebut.
Pembuatan Pangkalan Data Elektronik Kelurahan Muktiharjo Kidul Pedurungan Semarang Wibowo, Setyoningsih; Latifah, Khoiriya; Nada, Noora Qotrun
JIU Vol 2, No 1: JUNI (2016)
Publisher : JIU

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract - The advancement of information technology and communication affect the development of storage technology (archival) where archives have an important role in every organization, as well as government and private offices. This research aims to design a system that is easily understood and implemented to help device performance villages become more effective and efficient. This research works preliminary study in the design manufacture electronic database. The subjects of this study is Muktiharjo Kidul village Pedurungan Semarang. This research object is the manufacture of electronic database. The technique used in this study using a system called the System Development Life Cycle (SDLC) is the process of making and editing systems as well as the models and methods used to develop the system. The result of this research is the creation of an electronic database system and the system has been designed to facilitate the performance of the device and can diimplentasikan village well. Based on the results of this study concluded created database aplication can be used to handle the data entry process, data changes, deletions and population data search. Keywords: database, SDLC, Muktiharjo Kidul, access
Passport Data Based On Time Series Neural Network Prediction Latifah, Khoiriya; Amelia Putri, Ika Ayu
International Conference on Coastal and Delta Areas Vol 3 (2017): The 3rd International Conference on Coastal and Delta Areas
Publisher : International Conference on Coastal and Delta Areas

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (435.54 KB)

Abstract

Globalization has encouraged changes in peoples lifestyles. The rapid flow of globalization between countries increasingly opens opportunities for each country to develop its economy. Level needs begin to shift, from secondary or tertiary needs into primary needs, such as a vacation or a trip, including travel abroad. The mobility of the population abroad for a holiday or business trip is also increasing, this will affect the busyness in the immigration office that has a very important role in terms of public services in the field of immigration. The number of immigration visitors is fluctuating and unpredictable, when will there be spikes that cause problems and high risks. To maintain the credibility and quality of service, the immigration office needs calculations in forecasting the number of passport makers when there is a surge of visitors in order to remain able to provide optimal service to visitors. This study uses the technique of forecasting Backpropagation Neural Network forecasting The superiority of Neural Network as a system is capable human thinking by computational intelligencebased computing in pattern recognition that is useful for modeling, predicting, detecting faults and controlling systems that require a design approach with computational artificial intelligence. Keyword : Passport, Neural Network Algorithm
INTEGRASI SOFTWARE CAD-CAM DALAM SISTEM OPERASI MESIN BUBUT CNC Setyoadi, Yuris; Latifah, Khoiriya
Jurnal Informatika Upgris Vol 1, No 2 Desember (2015)
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/jiu.v1i2 Desember.873

Abstract

Computer Aided Manufacturing (CAM)) adalah sebuah teknologi aplikasi yang menggunakan perangkat lunak komputer dan mesin untuk memfasilitasi dan mengotomatisasi proses manufaktur. Computer Aided Manufacturing (CAM)) adalah penerus dari Computer Aided Engineering (CAE) dan sering digunakan bersama dengan Computer-Aided Design (CAD). Bidang manufaktur, perangkat komputer telah dipergunakan untuk mengontrol mesin-mesin produksi otomatis dengan ketepatan tinggi, misalnya mesin CNC. ?é?áArtikel ini membahas tentang penggunaan software CAD-CAM (SOLIDWorks dan CAMWorks yang terintegrasi) kemudian diaplikasikan ke mesin bubut CNC yang menggunakan software Mach3, Mach3 adalah software yang bisa mengubah komputer dekstop menjadi sebuah piranti kontroller mesin CNC. Software SOLIDWorks, CAMWorks dan Mach3 diintegrasikan ke dalam sistem operasi mesin bubut CNC sehingga proses koreksi dan modifikasi format perintah gerakan dalam G/M code dapat dilakukan dalam software tersebut.
ANALISIS DAN PENERAPAN ALGORITHMA C45 DALAM DATA MINING UNTUK MENUNJANG STRATEGI PROMOSI PRODI INFORMATIKA UPGRIS Latifah, Khoiriya
JURNAL TEKNIK INFORMATIKA Vol 11, No 2 (2018): Jurnal Teknik Informatika
Publisher : Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v11i2.6706

Abstract

ABSTRAK Untuk menarik minat pendaftar mahasiswa baru memerlukan strategi khusus. Salah satu strategi adalah  dengan melakukan analisa data dengan tujuan mengubah kumpulan data menjadi memiliki nilai bisnis melalui laporan analitik sehingga menghasilkan   informasi yang akan diambil polanya menjadi pengetahuan [Kusrini, 2009]. Teknik klasifikasi merupakan pendekatan fungsi klasifikasi dalam data mining yang digunakan untuk melakukan prediksi atas informasi yang belum diketahui sebelumnya[Larose, 2005]. Pohon keputusan merupakan metode klasifikasi dan prediksi. pada penelitian ini algorithma yang dipakai untuk pembentukan pohon keputusan  dengan  mengunakan algoritma C45[Larose, 2005]. Data yang diproses adalah data mahasiswa baru angkatan 2014 dan angkatan 2015. Hasil penelitian ini menunjukkan bahwa variabel yang paling tinggi pengaruhnya terhadap hasil registrasi mahasiswa adalah Asal Sekolah dan Jenis Kelamin. Rata-rata berasal dari Semarang dengan jurusan SMU dari IPA dan yang berasal dari luar kota rata-rata berasal dari Batang dan Pati.  Dari SMU jurusan  IPS dan berjenis kelamin Laki-laki berasal dari Batang  dan yang berjenis kelamin Perempuan berasal dari Pati.. Accuracy dari pembenukan model ini adalah sebesar 89.33 %  (Good Classification).  ABSTRACT To attract new student applicants requires a special strategy. One strategy is to perform data analysis with the aim of converting the data set to have business value through analytic reports so that the information will be taken into the pattern of knowledge [Kusrini, 2009]. The classification technique is an approximate classification function in data mining used to predict information previously unknown [Larose, 2005]. Decision tree is a method of classification and prediction. in this study the algorithm used for the formation of decision trees using the C45 algorithm [Larose, 2005]. Processed data are new student data of class of 2014 and class of 2015. The result of this research indicates that the variable that has the highest effect on student registration result is School Origin and Gender. The average comes from Semarang with high school majors from IPA and those coming from out of town on average come from Batang and Pati. Of SMU majoring in IPS and Male sex comes from the stem and the female sex is derived from Pati .. Accuracy of this model is 89.33% (Good Classification). 
PELACAKAN DAN SEGMENTASI OBJEK BERGERAK MENGGUNAKAN METODE K-MEANS CLUSTERING BERBASIS VARIASI JARAK prabowo, dwi puji; latifah, khoiriya; Pramunendar, Ricardus Anggi
Jurnal Informatika Upgris Vol 5, No 1: Juni (2019)
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/jiu.v5i1.2818

Abstract

In computer vision tracking and object segmentation is one important step in video processing. Accuracy in object tracking is important in video processing, where accurate object tracking is a thing that continues to be done by many researchers. there are still many problems that are often experienced when tracking objects in terms of lighting, noise up to a high level of error. Many methods can be used in research, one of which is clustering method. Clustering method is a method that is widely used in grouping data, one of which is often used is Kmeans clustering. This method is very flexible, and is able to classify large amounts of data. Besides that, Kmeans is also able to work adeptly and segment the image well. For this study using 5 distance approaches (cambera, chebychef, mahattan, minkowski, Euclidean) distance approach which is expected to improve the results of better accuracy. From the results of the research produced a mahatan distance approach has the best accuracy results with a PNSR value of 16,34399 and the lowest MSE value with a value of 1521,793. Compared to the use of standard models with Euclidean, the approach of high distance accuracy increases
IDENTIFIKASI SERAT BAMBU MENGGUNAKAN EKSTRAKSI CIRI STATISTIK ORDE 2 (GLCM) DAN PENGUKURAN JARAK K-NN Latifah, Khoiriya; Rochim, Abdul; Supriyadi, Bambang
JURNAL TEKNIK INFORMATIKA Vol 12, No 2 (2019): JURNAL TEKNIK INFORMATIKA
Publisher : Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v12i2.8946

Abstract

Indonesia is a large bamboo producer. Many benefits can be taken from bamboo trees, among others, as an alternative material for environmentally friendly construction, handicraft, and even become a safe material for use. Based on the property of its mechanical strength, bamboo has high tensile strength and fiber content, including fiber length, inter-fiber adhesive, namely lignin and the higher diameter of bamboo fiber, causing bamboo stems to become stronger and stiffer so that bamboo quality is getting better. One objective is to use a texture analysis of statistical features extraction of digital image processing. Feature extraction is a process to get the characteristics of visual perception. Texture information can be used to distinguish the surface properties of objects in images that are related to coarse and fine. This research uses a second-order statistical calculation of Gray Level Co-occurrence Matrices (GLCM) by measuring contrast, energy, homogeneity, and correlation levels to determine roughness from bamboo image textures that have irregular patterns. The second method is to use similarity measurements with the K-NN method in which in this study K = 3 with testing images of 28 images obtained an accuracy of 0.8, precission of 0, 8 and f-measurement of 0.9.