Ikhwannul Kholis, Ikhwannul
Universitas 17 Agustus 1945

Published : 2 Documents
Articles

Found 2 Documents
Search

Analisis Variasi Parameter Backpropagation Artificial Neural Network dan Principal Component Analysis Terhadap Sistem Pengenalan Wajah Kholis, Ikhwannul; Alam, Syah
ELECTRANS Vol 14, No 1 (2016): Volume 14, Nomor 1, Tahun 2016
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (616.767 KB)

Abstract

Face recognition can be done by using Backpropagation Artificial Neural Network (ANN) and Principal Component Analysis (PCA). ANN is made to resemble the human neural system. By varying some parameters on backpropagation, backpropagation characteristics is known to minimize errors and epoch and enlarge Recognition Rate. The experimental results show the relationship between the parameters of eigenvalues, alpha, and coefficient of momentum, against the recognition rate obtained.
ANALISIS VARIASI PARAMETER BACKPROPAGATION ARTIFICIAL NEURAL NETWORK PADA SISTEM PENGENALAN WAJAH BERBASIS PRINCIPAL COMPONENT ANALYSIS kholis, ikhwannul; Rofii, Ahmad
JURNAL KAJIAN TEKNIK ELEKTRO Vol 2, No 1 (2017): JKTE Vol 2 No 1 (Maret-Agustus 2017)
Publisher : Universitas 17 Agustus 1945 Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1153.415 KB)

Abstract

Pengenalan wajah dapat dilakukan dengan menggunakan metode Backpropagation Artificial Neural Network (ANN) dan Principal Component Analysis (PCA). ANN dibuat menyerupai sistem syaraf manusia. Dengan beberapa parameter pada Backpropagation, dapat diketahui karakteristik Backpropagation sehingga dapat memperkecil error dan epoch serta memperbesar Recognition Rate. Hasil percobaan menunjukkan hubungan antara parameter eigenvalaue, parameter alpha, dan koefisien momentum terhadap Recognition Rate yang diperoleh.  Kata kunci : ANN, Backpropagation, JST, Recognition Rate, Face Recognition, PCA.