Triyoni Purbonegoro, Triyoni
Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih I, Ancol Timur Jakarta Utara 14430

Published : 5 Documents
Articles

Found 5 Documents
Search

Copper and Cadmium Toxicity to Marine Phytoplankton, Chaetoceros gracilis and Isochrysis sp.

Indonesian Journal of Chemistry Vol 15, No 2 (2015)
Publisher : Universitas Gadjah Mada

Show Abstract | Original Source | Check in Google Scholar

Abstract

In Copper (Cu) based antifouling (AF) paints Cu was largely used as booster biocide after organotin was banned. Cu is micronutrient which is important in photosynthesis process because Cu is an essential metal as component of enzyme and electron transport chain. But in certain dosage, Cu could be toxic to marine organism. Chaetoceros gracilis and Isochrysis sp. are dominant microalgae in aquatic ecosystem. In this study the effect of Cu and Cadmium (Cd) on two marine microalgae, C. gracilis and Isochrysis sp. were compared. Toxicity test was based on American Standard for Testing Material (ASTM). IC50-96 h of Cd as reference toxicant was 2,370 mg.L-1 for C. gracilis and 490 mg.L-1 for Isochrysis sp. IC50-96 h of Cu to growth of C. gracilis was 63.75 mg.L-1 and Isochrysis sp. was 31.80 mg.L-1. Both Cd and Cu were inhibited growth of microalgae. Based on IC50-96 h value, it could be concluded that Cu was more toxic than Cd. Toxicity of Cu was 37 times stronger than Cd for C. gracilis and 15 times for Isochrysis sp. It was estimated that at concentration 10 mg.L-1 Cu does not show observable effect (NOEC) to C. gracilis and 5 mg.L-1 to Isochrysis sp. The lowest observable effect of Cu (LOEC) to C. gracilis was at concentration 17 mg.L-1 and 10 mg.L-1 for Isochrysis sp.

ASSESSING CONTAMINATION LEVEL OF JAKARTA BAY NEARSHORE SEDIMENTS USING GREEN MUSSEL (PERNA VIRIDIS) LARVAE

Marine Research in Indonesia Vol 41, No 2 (2016)
Publisher : Research Center for Oceanography - Indonesian Institute of Sciences (LIPI)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (586.301 KB)

Abstract

Indication of accumulation of heavy metal in sediments will lead to problem for shore and sea ecosystems, biota living in that area and human’s health. The research is aiming to analyse the toxicity of sediment from thirty one locations in Jakarta Bay using Perna Viridis. High amount in larval abnormality found in sediments from the area near mainland and estuary are an indication of high influence of waste from anthropogenic activities from Jakarta mainland. These areas are down stream of Cengkareng Drain, Kamal River, Grogol River and Cakung River, area around sea transportation and North Jakarta Integrated Industrial Area. Sediment of Jakarta Bay, especially coming from estuary area and near to the land area causes an increase in green mussel larval abnormality. This indicates the high of waste influence from anthropogenic activity from Jakarta land area.

AMPHIPOD DISTRIBUTION IN THE SOFT-BOTTOM SUBTIDAL ZONES OF JAVA ISLAND IN RELATION TO SEDIMENT TYPES

Marine Research in Indonesia Vol 40, No 1 (2015)
Publisher : Research Center for Oceanography - Indonesian Institute of Sciences (LIPI)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1076.611 KB)

Abstract

Amphipods inhabit many marine benthic habitats and have an important ecological role. However, there is a lack of information about Indonesian amphipod diversity and distribution, especially in the shallow subtidal sediments of Probolinggo and Tangerang. During the transition to the monsoon season in September 2014, eight subtidal stations were sampled in Bayeman (Probolinggo) on East Java and seven subtidal stations were sampled in Kramat Kebo (Tangerang) in West Java. A total of 7346 amphipods individuals were collected, comprising five genera. Genus Photis was the most abundant group, followed by Grandidierella and Synchelidium. Multivariate analyses of these data indicated that sampling location and sediment granulometry were major determinants of distribution and composition of amphipods in Probolinggo and Tangerang.

SENSITIVITAS Nitzschia sp TERHADAP TEMBAGA DAN KADMIUM

Jurnal Segara Vol 15, No 1 (2019): April
Publisher : Pusat Riset Kelautan

Show Abstract | Original Source | Check in Google Scholar

Abstract

The use of representative test organism with the tested material is absolutely critical factor in a bioassay. Various tropical test organism has been widely used in Indonesia such as fish, sea urchins, fish and phytoplankton. Phytoplanktons such as Chaetoceros gracilis, Tetraselmis sp., Isochrysis sp., Pavlova sp., live in the water column have been well documented. However, benthic phytoplankton such as Nitszchia sp. not widely known. This paper aims to examine the potential of Nitzschia sp. as a sediment bioassay test biota. Parameters studied were growth curve and sensitivity to cadmium and copper. The results showed that the growth of Nitszchia sp. increased rapidly on the fourth day until the sixth day. After the sixth day, the growth tends to decrease. Sensitivity to toxicants was indicated by IC50 (Inhibition Concentration) value of 0.078 for copper and 0.26 mg / L for cadmium. The conclusion of this study is, Nitszchia sp. can be used as test organims for sediment bioassays because they meet the minimum density requirements as well as are sensitive to cadmium and copper toxicants.

Inhibition Effects of Jakarta Bay Sediments to the Growth of Marine Diatom (Chaetoceros Gracilis)

BULLETIN OF THE MARINE GEOLOGY Vol 33, No 2 (2018)
Publisher : Marine Geological Institute of Indonesia

Show Abstract | Original Source | Check in Google Scholar

Abstract

Jakarta Bay coastal ecosystem is known suffered from water pollution and habitat degradation. Solid and fluid waste from households and several industrial areas flow and ended up in the bay. Ecotoxicological studies are needed to assess the effects of pollutant on marine organism, including phytoplankton as the primary producer. Therefore chemical analysis and toxicity test were performed to investigate the impact of Jakarta Bay Sediments to marine diatoms Chaetoceros gracilis. Heavy metals concentration especially Cu, Pb, Cd, and Hg in the sediments were lower than in previous studies. It could be related to the stricter environmental regulations which started enforced at the end of 1990s. Meanwhile, PAH and pesticide were higher than in previous studies. Increasing activities and maritime traffic in surrounding area of Tanjung Priok Port area and most likely comes from other adjacent harbors (Muara Baru, Muara Angke, and Marina Ancol harbor) and the massive usage of the pesticide compound in the households of the Jakarta City area were suspected to be the reasons. Estuaries area and locations <10 km were identified and predicted would produce harmful effects since the concentration of Zn and Hg in those area exceeded Probable Effects Level (PEL) of Sediment Quality Guidelines (SQG). The growth responses of Chaetoceros gracilis were varied greatly. Most of the sites (24 from 31 sites) showed inhibition effects on the growth of diatoms, ranged from 1.75-35.33 % (17.75±9.59 %) relative to control, with the highest inhibition value was at Cengkareng Drain estuary (M2). The relationship between the concentration of contaminants and the inhibition response could not be clearly explained, however, there is an assumption that low concentrations of some heavy metals were suspected to give adverse effects on diatom’s growth.Keywords: sediment, toxicity, marine diatoms, Chaetoceros gracilis, Jakarta BayEkosistem Teluk Jakarta dikenal mengalami pencemaran air dan degradasi habitat. Limbah cair dan padat berasal dari perumahan dan industri mengalir dan berakhir di teluk tersebut. Kajian ekotoksikologi diperlukan untuk mengetahui pengaruh pencemar terhadap organisme laut termasuk fitoplankton sebagai produsen primer. Analisis kimia dan uji toksisitas dilakukan untuk mengetahui dampak sedimen Teluk Jakarta terhadap diatom laut Chaetoceros gracilis. Konsentrasi logam berat terutama Cu, Pb, Cd, dan Hg dalam sedimen lebih rendah dari penelitian sebelumnya. Hal tersebut berkaitan dengan peraturan lingkungan ketat yang mulai diberlakukan pada akhir 1990-an. Namun demikian, konsentrasi PAH dan pestisida lebih tinggi dari penelitian sebelumnya. Hal tersebut diduga kuat akibat dari peningkatan aktivitas dan lalu lintas maritim di daerah sekitar Pelabuhan Tanjung Priok, juga kemungkinan besar berasal dari pelabuhan lain yang berdekatan (Muara Baru, Muara Angke, dan pelabuhan Marina Ancol) serta akibat penggunaan besar-besaran senyawa pestisida kegiatan rumah tangga di wilayah Kota Jakarta. Daerah dan lokasi estuaria <10 km diidentifikasi dan diprediksi akan menghasilkan efek berbahaya karena konsentrasi Zn dan Hg di area tersebut melebihi Probable Effects Level (PEL) dari Pedoman Kualitas Sedimen (SQG). Respon pertumbuhan diatom laut Chaetoceros gracilis sangat bervariasi. Sebagian besar stasiun (24 dari 31 stasiun) menunjukkan efek penghambatan pada pertumbuhan diatom, berkisar antara 1,75-35,33% (17,75 ± 9,59%) relatif terhadap kontrol, dengan nilai penghambatan tertinggi di muara Sungai Cengkareng (M2). Hubungan antara konsentrasi kontaminan dan respon penghambatan tidak dapat dijelaskan dengan lebih pasti namun terdapat asumsi konsentrasi rendah dari beberapa logam berat diduga memberikan efek buruk pada pertumbuhan diatom.Kata Kunci: sedimen, toksisitas, diatom laut, Chaetoceros gracilis, Teluk Jakarta