Indhana Sudiharto, Indhana
Program Studi Teknik Elektro Industri, Departemen Teknik Elektro Politeknik Elektronika Negeri Surabaya Jl. Raya ITS, Sukolilo, Surabaya 60111

Published : 4 Documents
Articles

Found 2 Documents
Search
Journal : EMITTER International Journal of Engineering Technology

Load Identification Using Harmonic Based on Probabilistic Neural Network Anggriawan, Dimas Okky; Amsyar, Aidin; Prasetyono, Eka; Wahjono, Endro; Sudiharto, Indhana; Tjahjono, Anang
EMITTER International Journal of Engineering Technology Vol 7, No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (529.473 KB) | DOI: 10.24003/emitter.v7i1.330

Abstract

Due to increase power quality which are caused by harmonic distortion it could be affected malfunction electrical equipment. Therefore, identification of harmonic loads become important attention  in the power system. According to those problems, this paper proposes a Load Identification using harmonic based on probabilistic neural network (PNN). Harmonic is obtained by experiment using prototype, which it consists of microcontroller and current sensor. Fast Fourier Transform (FFT) method to analyze of current waveform on loads become harmonic load data. PNN is used to identify the type of load. To load identification, PNN is trained to get the new weight. Testing is conducted To evaluate of the accuracy of the PNN from combination of four loads. The results demonstrate that this method has high accuracy to determine type of loads based on harmonic load
Load Identification Using Harmonic Based on Probabilistic Neural Network Anggriawan, Dimas Okky; Amsyar, Aidin; Prasetyono, Eka; Wahjono, Endro; Sudiharto, Indhana; Tjahjono, Anang
EMITTER International Journal of Engineering Technology Vol 7 No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (529.473 KB) | DOI: 10.24003/emitter.v7i1.330

Abstract

Due to increase power quality which are caused by harmonic distortion it could be affected malfunction electrical equipment. Therefore, identification of harmonic loads become important attention  in the power system. According to those problems, this paper proposes a Load Identification using harmonic based on probabilistic neural network (PNN). Harmonic is obtained by experiment using prototype, which it consists of microcontroller and current sensor. Fast Fourier Transform (FFT) method to analyze of current waveform on loads become harmonic load data. PNN is used to identify the type of load. To load identification, PNN is trained to get the new weight. Testing is conducted To evaluate of the accuracy of the PNN from combination of four loads. The results demonstrate that this method has high accuracy to determine type of loads based on harmonic load