Melia Laniwati Gunawan
Chemical Engineering Program, Bandung Institute of Technology, Jalan Ganesha 10 Bandung 40132, Indonesia

Published : 2 Documents
Articles

Found 2 Documents
Search

Synthesis and Activity Test of Cu/ZnO/Al2O3 for the Methanol Steam Reforming as a Fuel Cell’s Hydrogen Supplier Makertihartha, IGBN; Subagjo, Subagjo; Gunawan, Melia Laniwati
Journal of Engineering and Technological Sciences Vol 41, No 1 (2009)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Original Source | Check in Google Scholar | Full PDF (532.438 KB)

Abstract

The  synthesis  of  hydrogen  from  hydrocarbons  through  the  steam reforming  of  methanol  on  Cu/ZnO/Al2O3  catalyst  has  been  investigated.  This process is assigned to be one of the promising alternatives for  fuel cell hydrogen process source. Hydrogen synthesis from methanol can be carried out by means of  methanol  steam  reforming  which  is  a  gas  phase  catalytic  reaction  between methanol and water. In this research, the  Cu/ZnO/Al2O3  catalyst  prepared by the dry  impregnation  was  used.  The  specific  surface  area  of  catalyst  was  194.69 m2/gram.The  methanol  steam  reforming  (SRM)  reaction  was  carried  out  by means of the injection of gas mixture containing methanol and water with 1:1.2 mol ratio and 20-90 mL/minute feed  flow rate to a fixed bed reactor loaded by 1 g of catalyst. The reaction temperature was 200-300 °C, and the reactor pressure was 1 atm. Preceding  the reaction, catalyst was reduced in the H2/N2  mixture at 160  °C.  This  study  shows  that  at  300  °C  reaction  temperature,  methanol conversion  reached  100%  at  28  mL/minute  gas  flow  rate.  This  conversion decreased  significantly  with  the  increase  of  gas  flow  rate.  Meanwhile,  the catalyst prepared for SRM  was stable in 36 hours of operation at 260  °C. The catalyst exhibited a good stability although the reaction condition was shifted to a higher gas flow rate.
Synthesis of NaY Zeolite Using Mixed Calcined Kaolins Subagjo, Subagjo; Rahayu, Endang Sri; Samadhi, Tjokorde Walmiki; Gunawan, Melia Laniwati
Journal of Engineering and Technological Sciences Vol 47, No 6 (2015)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Original Source | Check in Google Scholar | Full PDF (257.138 KB)

Abstract

Kaolin is one of several types of clay minerals. The most common crystalline phase constituting kaolin minerals is kaolinite, with the chemical composition Al2Si2O5(OH)4. Kaolin is mostly used for manufacturing traditional ceramics and also to synthesize zeolites or molecular sieves. The Si-O and Al-O structures in kaolin are inactive and inert, so activation by calcination is required. This work studies the conversion of kaolin originating from Bangka island in Indonesia into calcined kaolin phase as precursor in NaY zeolite synthesis. In the calcination process, the kaolinite undergoes phase transformations from metakaolin to mullite. The Bangka kaolin is 74.3% crystalline, predominantly composed of kaolinite, and 25.7% amorphous, with an SiO2/Al2O3 mass ratio of 1.64. Thermal characterization using simultaneous DSC/TGA identified an endothermic peak at 527°C and an exothermic peak at 1013°C. Thus, three calcination temperatures (700, 1013, and 1050 °C) were selected to produce calcined kaolins with different phase distributions. The best product, with 87.8% NaY zeolite in the 54.7% crystalline product and an SiO2/Al2O3 molar ratio of 5.35, was obtained through hydrothermal synthesis using mixed calcined kaolins with a composition of K700C : K1013C : K1050C = 10 : 85 : 5 in %-mass, with seed addition, at a temperature of 93 °Cand a reaction time of 15 hours.