Articles

Found 2 Documents
Search

PEMISAHAN FRAKSI RADIOIOD DALAM PROSES Mo-99 HASIL FISI U-235 DAN PENGGUNAANNYA UNTUK PEMBUATAN HIPPURAN-I-131 Soenarjo, Sunarhadijoso; Gunawan, Adang Hardi; Wisnukaton, Kadarisman; Purwadi, Bambang; Sukmana, Ateng; Sriyono, Sriyono; Rukman, Rukman
Jurnal Radioisotop dan Radiofarmaka Vol 1, No 1 (1998): Jurnal PRR 1998
Publisher : Jurnal Radioisotop dan Radiofarmaka

Show Abstract | Original Source | Check in Google Scholar | Full PDF (3971.795 KB)

Abstract

PEMISAHAN FRAKSI RADIOIOD DALAM PROSES 99Mo HASIL FISI 235U DAN PENGGUNAANNYA UNTUK PEMBUATAN HIPPURAN-131I. Proses produksi radioisotop 99Mo dari reaksi fisi 235U menghasilkan fraksi radioaktif non-molibdenum yang dikelompokkan dalam 3 macam fraksi, yang selama ini di PPR - BATAN masih diperlakukan sebagai limbah radioaktif, yaitu fraksi radioiod, fraksi radioxenon (gas mulia) dan fraksi uranium pasca iradiasi. Fraksi radioiod diharapkan mempunyai potensi sebagai sumber pengadaan radioisotop 131I, dan oleh karena itu dalam penelitian ini dilakukan upaya pemisahan lebih lanjut fraksi radioiod tersebut sebagai larutan "bulk" Na131I. Pemisahan dilakukan melalui pemerangkapan fraksi radioiod menggunakan kolom serat tembaga, diikuti dengan pemurnian menggunakan kolom karbon. Larutan "bulk" Na131I dihasilkan dengan elusi kolom karbon menggunakan larutan NaOH 0,2 N. Keradioaktifan total larutan "bulk" Na131I yang dihasilkan relatif rendah, diduga antara lain karena sebagian besar fraksi radioiod lolos terlepas dati kolom serat tembaga dan terperangkap dalam "cold finger" yang sebenarya dimaksudkan untuk menangkap fraksi radioxenon. Tetapi karakteristika pH, radiokimia dan radionuklidanya memenuhi persyaratan untuk larutan "bulk" Na131I. Penggunaannya untuk menandai senyawa Hippuran menghasilkan produk Hippuran-131I dengan rendemen penandaan yang baik. Akan tetapi, penggunaan kolom resin Dowex 1X8 (Cl-) 100 - 200 mesh untuk pemurnian Hippuran-131I perlu dipertimbangkan lagi karena resin tersebut mempunyai potensi cukup besar untuk mengikat spesi Hippuran-131I. SEPARATION OF RADIOIODINE FRACTION IN THE PROCESSING LINE OF 235U FISSION PRODUCED 99Mo AND ITS UTILIZATION FOR PREPARATION OF HIPPURAN-131I. Production process of 99Mo from fission of 235U in RPC - BATAN produces non-moly radioactive fractions. which are classifiable into 3 fractions, i.e. : radioiodine fraction, radioxenon (noble gas) fraction and post irradiated uranium fraction. The radioiodine fraction is expectable to be used as a source for providing radioisotope of 131I, and, therefore, an effort for separation of the radioiodine fraction was carried out. The separation was performed by trapping the radioiodine in a copper-wool column followed by purification using charcoal column. The bulk solution of Na131I was then obtained by eluting the charcoal column with 0.2 N NaOH solution. The total activity of the resulting Na131I bulk solution was relatively low, presumable due to the escape of the radioiodine from the copper-wool column into the cold finger originally used for trapping the noble gas fraction. However, the pH, radiochemical and radionuclidic purities satisfactorily met the specification required for Na131I bulk solution. Radioactive labeling yields on Hippuran with the resulting Na131I bulk solution were also satisfactory, but the purification of the resulting Hippuran-131I using Dowex lX8 (Cl-) 100 - 200 mesh resin should be reconsidered because of the adsorption of Hippuran-131I by the resin.
RADIONUCLIDIC SEPARATION OF RADIOACTIVE INDIUM FOR MEDICAL AND BIOLOGICAL RESEARCH APPLICATIONS FROM TARGET MATRIX BASED ON NUCLEAR REACTION OF NATCd (n,γ) 115Cd 􀃎 115mIn Soenarjo, Sunarhadijoso; Wisnukaton, Kadarisman; ., Sriyono; ., Abidin; ., Herlina
Jurnal Ilmiah Aplikasi Isotop dan Radiasi Vol 5, No 2 (2009): Desember 2009
Publisher : BATAN

Show Abstract | Original Source | Check in Google Scholar | Full PDF (353.671 KB)

Abstract

Radioisotope 115mIn has been considered to be a very potential radioisotope formedical purposes and biological researches. Its physical properties are comparable to those of the radioisotope 99mTc. Although 115mIn is very potential for application innuclear medicine and biological researches, it is not widely explored for domestic use due to domestic limitations on its production technology. Accordingly, the objective of the present works is to master a production processing technology of 115mIn for medical and biological research applications. As the daughter of 115Cd, 115mIn is produced by neutron activation on cadmium target followed by separation in a radioisotope generator based on nuclear reaction of 114Cd (n,γ) 115Cd → 115mIn. In thisstudy, natural CdO was used as a target while the irradiation was carried out in the G.A. Siwabessy reactor. The separation of radioisotope 115mIn from the irradiated target was carried out by means of solvent extraction and anion exchange columnchromatography. In terms of solvent extraction, the post-irradiated target solution was extracted using two extractants namely 8-hydroxy-quinoline in chloroform and 2-ethylhexyl-phosphate in toluene. The resulting radioindium(III)-organo-complexwas then stripped from the organic phase to release the radioisotope 115mIn. Meanwhile in anion exchange column chromatography, the cadmium fraction in the post-irradiated target solution was conditioned to form anion complex, CdI42-, which was then bound on AG 1X8 (Cl¯, 100 — 200 mesh) resin column. The formed 115mIn, the daughter of 115Cd, in the form of 115mIn3+ was then eluted from the column using 0.05 M HCl. It was found that the radioactive indium obtained from the solventextraction using 8-hydroxyquinoline in chloroform was chemically contaminated by the extractant, while that obtained from the solvent extraction using 2-ethylhexylphosphate in toluene was significantly contaminated by 115Cd. The anion exchangecolumn chromatography was found to be the best method for separation of 115mIn from post-irradiated target solution because this method produced pure 115mIn. This was indicated by the resulting 115mIn fraction that gave a mono-energetic γ-rayspectrum peaking at 336 keV and a half-life of 4.486 hours which were related to 115mIn. The quantitative aspect which was regarded as a radioactivity of the produced 115Cd was found to give a fluctuated result. This result was suspected to be inflicted by irradiation parameters such as inaccuracy in irradiation time, thechanges of reactor power and neutron flux as well as inter-irradiation-position load, which varied from one irradiation to another irradiation.