Sugeng Waluyo
Faculty of Engineering, Universitas Jenderal Soedirman Jl. Mayjen Sungkono Km. 5 Blater, Purbalingga 53371

Published : 8 Documents
Articles

Found 8 Documents
Search

DEVELOPMENT OF OPEN SOURCE FINITE ELEMENT SOLVER “LD-FEM’ FOR MODELING AND SIMULATION OF RUBBER MATERIALS

ROTASI VOLUME 16, NOMOR 3, JULI 2014
Publisher : ROTASI

Show Abstract | Original Source | Check in Google Scholar | Full PDF (706.903 KB)

Abstract

“LD-FEM” is an open source computer program working on the basis of finite element method (FEM) which is aimed to model and simulate large deformation in rubber materials. The kinematics of large deformation on the basis of the Total Lagrange framework is applied to linear 4-nodes tetrahedral element and then solved with Newton-Raphson iterative scheme. Furthermore, to obtain the material tangent stiffness directly from strain energy density functions, the Gill-Murray theory of numerical second derivative is used in LD-FEM. Finally, by using the Mooney-Rivlin strain energy function, the performance of LD-FEM is addressed for uniaxial tensile, shear and torsion loading tests. The results confirm the capability of LD-FEM to capture nonlinear behavior of the large deformation either with analytical or numerical approach on the material stiffness derivation with error less than 2%.

IMPLEMENTATION OF ENGINEERING PRODUCT DESIGN FOR SMALL-SCALED MECHANICAL WORKSHOP : A STUDY IN PURBALINGGA, CENTRAL JAVA, INDONESIA

Techno Jurnal Ilmu Teknik Vol 16, No 2 (2015): Jurnal Techno Volume 16 No 2 Oktober 2015
Publisher : UMP

Show Abstract | Original Source | Check in Google Scholar

Abstract

Engineering product design can be understood simply as a collection of engineering activities that must be followed to produce good industrial products. In the simplest form it can be constructed from three major stages, i.e. specification of design requirements, drawing and prototyping.In order to give an overview of its implementation related to small-scaled mechanical workshop a prototype of plate bending machine is built completely from its design requirements. The machine is considered important because it supports standard manufacturing processes, i.e. plate forming, of muffler industries in Purbalingga, Central Java, Indonesia. During prototyping, communication among designer, drafter and manufacturer has been identified as the major responsible factor for producing design errors on the machine for each the stages. Thus, the proposed strategies, e.g. implementation of engineering software design and development of engineering design center in university, to minimize them based on quantitative approach are briefly discussed as well.Keywords : engineering design, prototype, bending machine, Purbalingga

Pengendapan Uranium dan Thorium Hasil Pelarutan Slag II

Eksplorium Buletin Pusat Teknologi Bahan Galian Nuklir Vol 36, No 2 (2015): November 2015
Publisher : Pusat Teknologi Bahan Galian Nuklir - BATAN

Show Abstract | Original Source | Check in Google Scholar

Abstract

Proses peleburan timah menghasilkan limbah berupa slag II dalam jumlah besar. Slag II sebagai terak pada proses peleburan timah masih mengandung beberapa unsur utama antara lain 0,0619% uranium, 0,530% thorium, 0,179% P2O5, dan 6,194% logam tanah jarang (LTJ) oksida total. Berdasarkan fakta tersebut, maka sangat menarik untuk meneliti pengolahan slag II, terutama untuk memisahkan uranium dan thorium yang terkandung di dalamnya. Uranium dan thorium dilarutkan dengan pelarut asam (H2SO4). Recovery pelarutan slag II dari hasil peleburan timah pada kondisi optimum adalah 98,52% uranium, 83,16% thorium, 97,22% fosfat, dan 69,62% LTJ. Uranium, thorium, LTJ, dan fosfat yang telah terlarut diendapkan agar masing-masing unsur terpisah. Faktor yang mempengaruhi kesempurnaan reaksi pada pengendapan antara lain reagen yang digunakan, pH reaksi, suhu, dan waktu. NH4OH digunakan sebagai reagen pengendapan dengan kondisi optimum proses pada pH 4. Suhu dan waktu reaksi tidak mempengaruhi proses. Recovery pengendapan yang dihasilkan adalah 93,84% uranium dan 84,33% thorium. Kata kunci: pengendapan, uranium, thorium, slag II, recovery

Pengendapan Unsur Tanah Jarang Hasil Digesti Monasit Bangka Menggunakan Asam Sulfat

EKSPLORIUM Vol 33, No 2 (2012): November 2012
Publisher : Pusat Teknologi Bahan Galian Nuklir - BATAN

Show Abstract | Original Source | Check in Google Scholar | Full PDF (236.485 KB)

Abstract

Unsur tanah jarang merupakan unsur yang banyak digunakan pada berbagai macam produk. Unsur tanah jarang yang berada di alam tidak ditemukan dalam keadaan bebas melainkan dalam bentuk senyawa kompleks sehingga diperlukan pengolahan secara kimia untuk memisahkan unsur tanah jarang dari senyawa kompleksnya. Monasit sebagai hasil samping proses pencucian timah Bangka mengandung beberapa unsur utama antara lain 0,298 % uranium (U), 4,171 % thorium (Th), 23,712 % fosfat (P2O5) dan 58,97 % oksida unsur tanah jarang (RE(OH)3). Monasit yang diolah secara kimiawi akan menghasilkan garam uranium, thorium, unsur tanah jarang dan fosfat. Unsur-unsur tersebut dapat dipisahkan secara individu melalui proses pengendapan secara bertahap. Proses pemisahan yang digunakan pada penelitian ini adalah metode pengendapan menggunakan asam sulfat sebagai reagen dan filtrat hasil digesti monasit Bangka sebagai umpan pengendapan. Proses digesti menghasilkan uranium, thorium, unsur tanah jarang dan fosfat yang terlarut dari senyawa kompleksnya. Unsur tanah jarang yang telah terlarut dapat dipisahkan dari unsur lainnya dengan metode pengendapan menggunakan asam sulfat. Penelitian ini bertujuan untuk mengetahui kondisi optimal pengendapan unsur tanah jarang. Hasil penelitian menunjukan bahwa jumlah H2SO4 yang ditambahkan sebanyak 3,5 kali volume umpan dan waktu pengendapan 20 menit, diperoleh persen rekoveri pengendapan 61,21 % REE, 78,46 % U dan 93,56 % PO4. Rare earth elements are elements that widely used in many products. Rare earth elements nature are not found in a free state, but they are in the complex compounds, so that chemically processing is required to separate the Rare earth elements from their complex compounds. Monazite as by product of Bangka tin process contains several major elements, such as 0.298% uranium (U), 4.171% thorium (Th), 23.712% phosphat (P2O5) and 58.97% rare earth elements (REE) oxide. These elements can be individually separated through a process of precipitation stages. The separation process used in the study is the method of acid by using sulfat acid as reagen and filtrat digestion as feeds. The process of digestion dissolve the elements U, Th, RE and phosphate from the complex compound. Rare earth elements that are disolved can be separated from the complex compounds by using sulfat acid precipitation process. The objective of research is to set the optimal conditions for the Rare earth elements precipitation with sulfat acid. The result showed that the amount of sulphuric H2SO4 which added is 3.5 times volume of feed and precipitation time is 20 minutes, percentage of precipitation recovery is 61.21 % REE, 78.46 % U, and 93.56 % PO4.

Pengendapan Uranium dan Thorium Hasil Pelarutan Slag II

EKSPLORIUM Vol 36, No 2 (2015): November 2015
Publisher : Pusat Teknologi Bahan Galian Nuklir - BATAN

Show Abstract | Original Source | Check in Google Scholar | Full PDF (379.242 KB)

Abstract

Proses peleburan timah menghasilkan limbah berupa slag II dalam jumlah besar. Slag II sebagai terak pada proses peleburan timah masih mengandung beberapa unsur utama antara lain 0,0619% uranium, 0,530% thorium, 0,179% P2O5, dan 6,194% logam tanah jarang (LTJ) oksida total. Berdasarkan fakta tersebut, maka sangat menarik untuk meneliti pengolahan slag II, terutama untuk memisahkan uranium dan thorium yang terkandung di dalamnya. Uranium dan thorium dilarutkan dengan pelarut asam (H2SO4). Recovery pelarutan slag II dari hasil peleburan timah pada kondisi optimum adalah 98,52% uranium, 83,16% thorium, 97,22% fosfat, dan 69,62% LTJ. Uranium, thorium, LTJ, dan fosfat yang telah terlarut diendapkan agar masing-masing unsur terpisah. Faktor yang mempengaruhi kesempurnaan reaksi pada pengendapan antara lain reagen yang digunakan, pH reaksi, suhu, dan waktu. NH4OH digunakan sebagai reagen pengendapan dengan kondisi optimum proses pada pH 4. Suhu dan waktu reaksi tidak mempengaruhi proses. Recovery pengendapan yang dihasilkan adalah 93,84% uranium dan 84,33% thorium. Tin smelting process produces waste in the form of large amount of slag II. Slag II still consist of major elements such as 0.0619% uranium, 0.530% thorium, 0.179% P2O5 and 6.194% RE total oxide. Based on that fact, the processing of slag II is interesting to be researched, particularly in separating uranium and thorium which contained in slag II. Uranium and thorium dissolved using acid reagent (H2SO4). Percentage recovery of uranium, thorium, phosphate and RE oxides by dissolution method are 98.52%, 83.16%, 97.22%, and 69.62% respectively. Dissolved uranium, thorium, phosphat, and RE were each precipitated. The factors which considerable affect the precipitation process are reagent, pH, temperature, and time. NH4OH is used as precipitation reagent, optimum condition are pH 4. Temperature and time reaction did not influence this reaction. Percentage recovery of this precipitation process at optimum condition are 93.84% uranium and 84.33% thorium.

Pengenalan Ababil: Program Finite Element Analysis (FEA) 3-Dimensi Untuk Struktur Rangka-Batang

Dinamika Rekayasa Vol 7, No 1 (2011): Dinamika Rekayasa - Februari 2011
Publisher : Jenderal Soedirman University

Show Abstract | Original Source | Check in Google Scholar | Full PDF (388.454 KB)

Abstract

Ababil is an open source computer program working on the basis offinite element method (FEM) which is aimed to analyze frame structures. It is mainly designed as a solver without embedded pre-or/and post-processing units. Recently, the solver is compatible only for reading and writing in the Gmsh [1] pre- and post-processing software environment. The FEM kinematics formulation applied here is relied on the Timoshenko Beam Theory (TBT) using linear shape function. Finally, the well-known FEM software MSC.Nastranis used to ensure the capability of Ababil in the prediction of frame deformation by means of FEMsimulation

Waste Tire Application in Concrete Structures

Aceh International Journal of Science and Technology Vol 6, No 1 (2017): April 2017
Publisher : Graduate School of Syiah Kuala University

Show Abstract | Original Source | Check in Google Scholar | Full PDF (1030.85 KB)

Abstract

The waste tire is produced more than 10 million tons every year in the world. This problem needs serious treatment to eliminate the waste tires. This work is aimed to recycle the waste tire in concrete as a reinforcement. The contribution of the waste tires in flexural strength capacity of concrete is investigated by using experimental work and numerical simulation. Since material is quite non-homogenous compared to the pure concrete, we use six concrete beam specimens with dimension 150 mm x 150 mm x 1000 mm to get better fitting results. One specimen is non reinforced concrete beam and five specimens are waste tires reinforced concrete beam. For each of the five specimen, the waste tire reinforcement is tensioned with 0%, 17%, 25%, 40% and 60% strain before casting the concrete. The flexural strength tests are conducted after 28 days concrete ages under three point loadings. After the test, we observe that the waste tire reinforcement together with pre-stress contribute significantly on the flexural strength of the concrete beam as predicted. Finally, to support the test, finite element analysis is performed as well in this work and compared with the experimental results.

Optimasi Lebar Celah Udara Generator Axial Magnet Permanen Putaran Rendah 1 Fase

Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI) Vol 4, No 4 (2015)
Publisher : Jurusan Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Original Source | Check in Google Scholar | Full PDF (573.985 KB)

Abstract

This study designs a 1-phase permanent magnet generator with double-sided axial coreless 10 stator poles to get optimum output voltage and power. Permanent magnet generator is chosen because it does not require a DC excitation current and the maintenance is relatively easy, so it has potential to be applied on a low head pico hydro power plant. The design uses NdFeb (Neodymium-Iron-Boron) type permanent magnet. The study was conducted by simulation to get the flux density in the stator coil using FEMM 4.2 applications. Simulation is done with the air gap width varies from 2 mm, 3 mm, 4 mm, and 5 mm. The depth of the magnet in the yoke varies from 0%, 5%, 10%, and 50% of the magnet thickness. Then, the flux density is used to estimate the output voltage and power of the generator. The results show that minimum output of 52.85 V and 195,56 VA is obtained at air gap distance of 5 mm and the depth of the magnet in yoke is 50%. Maximum output of 87,25 V and 322.84 VA is obtained at air gap distance of 2 mm and the depth of the magnet in yoke is 0% of the magnet thickness.Studi ini melakukan desain generator magnet permanen aksial 1 fase bertipe double sided coreless stator 10 kutub dengan tujuan mendapatkan output tegangan dan daya optimal. Generator magnet permanen dipilih karena tidak memerlukan arus eksitasi DC serta sistem pemeliharaan yang relatif mudah sehingga berpotensi diterapkan pada pembangkit listrik tenaga piko hidro head rendah. Jenis magnet permanen yang digunakan adalah NdFeb (Neodymium-Iron-Boron). Penelitian dilakukan dengan cara simulasi untuk mendapatkan rapat fluks pada kumparan stator menggunakan aplikasi FEMM 4.2. Simulasi dikakukan dengan variasi lebar celah udara dengan lebar 2 mm, 3 mm, 4 mm, dan 5 mm serta kedalaman magnet pada yoke 0%, 5%, 10%, dan 50% dari tebal magnet. Rapat fluks yang didapatkan digunakan untuk memperkirakan output tegangan dan daya generator. Hasilnya, output terkecil diperoleh pada jarak celah udara 5 mm dan kedalaman magnet pada yoke 50% dari tebal magnet, yaitu sebesar 52,85 V dengan daya 195,56 VA. Sedangkan output terbesar pada jarak celah udara 2 mm dan kedalaman magnet pada yoke 0% dari tebal magnet sebesar 87,25 V dengan daya 322,84 VA.