This Author published in this journals
All Journal Jurnal AgroBiogen
Kurniawan R. Trijatmiko
Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian, Jl. Tentara Pelajar 3A, Bogor 16111, Indonesia Telp. (0251) 8337975

Published : 3 Documents
Articles

Found 3 Documents
Search

Delivering of Over-Expression Construct OsWRKY76 Candidate Gene in Rice cv. Nipponbare through Agrobacterium tumefaciens Apriana, Aniversari; Sisharmini, Atmitri; Enggarini, Wening; Sudarsono, Sudarsono; Khumaida, Nurul; Trijatmiko, Kurniawan R.
Jurnal AgroBiogen Vol 7, No 1 (2011): Jurnal AgroBiogen
Publisher : Jurnal AgroBiogen

Show Abstract | Original Source | Check in Google Scholar

Abstract

Plant genetic improvement can be done through classical breeding or genetic engineering. WRKY is a transcription factor involved in regulating plant defense responses. OsWRKY76 gene is located in a narrow segment of chromosome 9 which is identified previously to be related to wide spectrum resistance in rice. A sequence of OsWRKY76 (+1.200 bp) has available in the gene bank and it makes possible to isolate, clone, and construct the gene into over-expression vector. The aim of this research was to assemble an over-expression construct of OsWRKY76 candidate gene and introduce it into rice through Agrobacterium-mediated transformation. A construct of pCAMBIA-1301::35S::OsWRKY76 has been successfully assembled and transformed into embryogenic calli of rice cv. Nipponbare using A. tumefaciens strain Agl-1 and EHA 105. A number of 126 independent lines has been produced, in which Agl-1 showed 3.8 times more efficient than EHA 105. PCR analysis of randomly selected 25 independent lines showed that all of them positively contained hptII gene, a selectable marker used in the over-expression construct of the OsWRKY76 candidate gene. Based on the result, it could be concluded that the over-expression construct of OsWRKY76 candidate gene have been successfully introduced into the tissue of Nipponbare.
Pengembangan Populasi Mutan Penanda Aktivasi: I. Transformasi Padi Japonica Tropis Lokal Sulawesi cv. Asemandi dengan bantuan Agrobacterium tumefaciens Sisharmini, Atmitri; Apriana, Aniversari; Enggraini, Wening; Trijatmiko, Kurniawan R.
Jurnal AgroBiogen Vol 5, No 2 (2009): Oktober
Publisher : Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian

Show Abstract | Original Source | Check in Google Scholar | Full PDF (242.701 KB)

Abstract

The rice transformation technologyis not only provides valuable methods for the introductionof useful genes into rice plant to improve importantagronomic traits, but also helps in studying gene functionand regulation based on rice genome sequence information.Knockout of genes by insertional mutagenesis is a straightforwardmethod to identify gene functions. One of themethods to develop rice mutants is through genetic transformationmediated by Agrobacterium using activationtagging by Ac-Ds system. A study was done with an objectiveto obtain mutant rice of local tropical japonica cv. Asemandithrough genetic trans-formation mediated by Agrobacteriumtumefaciens. The transformation was conducted usingAgrobacterium vector with the strain of Agl-1 containingactivation tag construct. The result of experiment showedthat it has been obtained 17 independent line (304 plants)transgenic Asemandi containing activation tag construct.These starter lines will be used as materials to developseveral generations of stabil rice mutant through selfing.
Genetic Diversity Analysis and F2 Population Development for Breeding of Long Juvenile Trait in Soybean Tasma, I Made; Yani, N. P. Mega Gena; Purwaningdyah, Rosliana; Satyawan, Dani; Nugroho, Kristianto; Lestari, Puji; Trijatmiko, Kurniawan R.; Mastur, Mastur
Jurnal AgroBiogen Vol 14, No 1 (2018): June
Publisher : Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian

Show Abstract | Original Source | Check in Google Scholar | Full PDF (3013.678 KB)

Abstract

Genetic diversity analysis using molecular markers is an important step for selecting appropriate parents in a soybean breeding program. The aims of this study were to (1) analyze genetic diversity of 29 soybean genotypes assessed with 27 SSR markers for selecting appropriate parents and (2) develop F2 populations to be used for breeding long juvenile (LJ) trait in soybean tobe cultivated in short photoperiod condition. The soybean genotypes used consisted of 11 Indonesian soybean genotypes and 18 genotypes introduced from the USA. F2 populations were developed by crossing Grobogan with three introduced genotypes carrying LJ character. The PIC values of the 27 SSR markers ranged from 0.87 to 0.96. Cluster analysis resulted in three mainclusters at coefficient similarity of 0.76. The five LJ introduced accessions and the nine Indonesian genotypes showed high genetic distances and are useful as parent pairs for developing breeding populations. The F1 progeny phenotypicperformances of the cross far exceeded the performaces of both parents. Three F2 populations were developed by crossing the distantly related soybean genotypes. The F2 populations were verified by using SSR markers and it was found that they segregated in a 1:2:1 ratio confirming the segregation ratio of codominant SSR markers. The F2 populations should be useful for breeding LJ characters to improve soybean productivity in low latitude tropical countries such as Indonesia, which has day length of approximately 12 h all year round.