Enrico Syaefullah
Mahasiswa Program S2 TTP Sekolah PAscasarjana IPB,Fateta IPB

Published : 6 Documents
Articles

Found 6 Documents
Search

VALUASI MUTU BUNGA POTONG KRISAN YELLOW FIJI MENGGUNAKAN PENGOLAHAN CITRA

Jurnal Keteknikan Pertanian Vol 20, No 3 (2006): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Original Source | Check in Google Scholar

Abstract

ABSTRACT The domestic and export market of chrysanthemum cut-flower require a prime and consistent cuality. Meanwhile, manual grading system based on human vision resulting in quality inconsistentcy. The objective of this study was to develop computer program for quality evaluation of Yellow Fiji chysanthemum cut-flower using image processing. The cut-flowers were classified into different quality standards (AA,A.B.C) based on the steam length and straightness, and flower diameter. Then results indicated a strong relationship between quality parameters extracted from the image and those obtained from direct meaurement for grade AA,A,B and C with R2=0.98, R2=0.97, R2=0.97, and R2=0.98 respectively for length of stem. Also with R2=0.90, R2=0.87, R2=88, and R2=88 respectively for diamter of flower. The validation of the computer program for the quality evaluation of Yellow Fiji chrysanthemum cut-flower performed a hight a ccuracy of 100% for AA grade, 90% for A grade, 85% for B grade, and 100% for C grade. Keyword: chrysanthemum, image processing, quality evaluation Diterima: 12 Juni 2006; Disetujui: 21 Nopember 2006

Identifikasi Perubahan Mutu Selama Penyimpanan Buah Manggis Menggunakan Near Infra Red Spectroscopy

Jurnal Ilmu Pertanian Indonesia Vol 17, No 2 (2012): Jurnal Ilmu Pertanian Indonesia
Publisher : Institut Pertanian Bogor

Show Abstract | Original Source | Check in Google Scholar | Full PDF (280.675 KB)

Abstract

One of quality changes during storage of intact mangosteen fruit is firmness. This occurrence was predicted to have associate with moisture content in the pericarp. The objective of this research was to determine the correlation between moisture content and firmness, and to predict moisture content changes based on reflectance spectrum of near infra red (NIR). The correlation between moisture content and firmness at 13 °C is y = 0.07972x2 – 9.833x + 305.9 while at room temperature showed y = 0.1207x2 – 14.89x + 460.8; in which y refers to firmness and x refers to moisture content in pericarp. The calibration and validation evaluation using partial least square of moisture content resulted in NIR and oven method showed that the magnitude of r is 0.758-0.882; RMSEC and RMSEP is 0.09-0.39%; CV<5% is at 2.5-3.3%. Moisture content prediction using NIR reflectant spektrum is y (temperature:8 °C) = -0.057x + 65.14; y (temperature 13 °C) = -0.253x + 64.96; y (room temperature) = -0.421x + 64.76. Keywords: chilling injury, mangosteen, near infra red, partial least square, storage quality  

VALUASI MUTU BUNGA POTONG KRISAN YELLOW FIJI MENGGUNAKAN PENGOLAHAN CITRA

Jurnal Keteknikan Pertanian Vol 20, No 3 (2006): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Original Source | Check in Google Scholar

Abstract

ABSTRACT The domestic and export market of chrysanthemum cut-flower require a prime and consistent cuality. Meanwhile, manual grading system based on human vision resulting in quality inconsistentcy. The objective of this study was to develop computer program for quality evaluation of Yellow Fiji chysanthemum cut-flower using image processing. The cut-flowers were classified into different quality standards (AA,A.B.C) based on the steam length and straightness, and flower diameter. Then results indicated a strong relationship between quality parameters extracted from the image and those obtained from direct meaurement for grade AA,A,B and C with R2=0.98, R2=0.97, R2=0.97, and R2=0.98 respectively for length of stem. Also with R2=0.90, R2=0.87, R2=88, and R2=88 respectively for diamter of flower. The validation of the computer program for the quality evaluation of Yellow Fiji chrysanthemum cut-flower performed a hight a ccuracy of 100% for AA grade, 90% for A grade, 85% for B grade, and 100% for C grade. Keyword: chrysanthemum, image processing, quality evaluation Diterima: 12 Juni 2006; Disetujui: 21 Nopember 2006

Identifikasi Perubahan Mutu Selama Penyimpanan Buah Manggis Menggunakan Near Infra Red Spectroscopy

Jurnal Ilmu Pertanian Indonesia Vol 17, No 2 (2012): Jurnal Ilmu Pertanian Indonesia
Publisher : Institut Pertanian Bogor

Show Abstract | Original Source | Check in Google Scholar | Full PDF (280.675 KB)

Abstract

One of quality changes during storage of intact mangosteen fruit is firmness. This occurrence was predicted to have associate with moisture content in the pericarp. The objective of this research was to determine the correlation between moisture content and firmness, and to predict moisture content changes based on reflectance spectrum of near infra red (NIR). The correlation between moisture content and firmness at 13 °C is y = 0.07972x2 – 9.833x + 305.9 while at room temperature showed y = 0.1207x2 – 14.89x + 460.8; in which y refers to firmness and x refers to moisture content in pericarp. The calibration and validation evaluation using partial least square of moisture content resulted in NIR and oven method showed that the magnitude of r is 0.758-0.882; RMSEC and RMSEP is 0.09-0.39%; CV<5% is at 2.5-3.3%. Moisture content prediction using NIR reflectant spektrum is y (temperature:8 °C) = -0.057x + 65.14; y (temperature 13 °C) = -0.253x + 64.96; y (room temperature) = -0.421x + 64.76. 

TEKNOLOGI PENGEMASAN ATMOSFIR TERMODIFIKASI (MODIFIED ATMOSPHERE PACKAGING/MAP) DAN VAKUM PADA BUAH DURIAN

Jurnal Penelitian Pascapanen Pertanian Vol 14, No 1 (2017): Jurnal Penelitian Pascapanen Pertanian
Publisher : Balai Besar Penelitian dan Pengembangan Pascapanen Pertanian

Show Abstract | Original Source | Check in Google Scholar | Full PDF (678.751 KB)

Abstract

Durian tergolong buah klimakterik dengan tingkat respirasi tinggi, sehingga menyebabkan umur simpannya pendek karena proses pematangan buah berlangsung cepat. Laju respirasi dapat ditekan dengan mengatur kondisi atmosfir lingkungan dan penyimpanan pada suhu rendah. Mengkondisikan atmosfir lingkungan untuk buah dapat dilakukan dengan mengaplikasikan teknik pengemasan atmosfir termodifikasi (Modified Atmosphere Packaging/MAP) dan vakum. Tujuan penelitian adalah untuk mengetahui pengaruh aplikasi teknik pengemasan terhadap umur simpan buah durian. Penelitian dilakukan terhadap buah durian Perwira dengan tingkat ketuaan 1-3 hari sebelum jatuh yang berasal dari Majalengka, Jawa Barat, Indonesia. Sebelum dilakukan pengemasan, buah durian dibersihkan kemudian dicelupkan ke dalam ekstrak lengkuas 5%, dicelupkan dalam larutan lilin 4 % dan selanjutnya ditiriskan. Masing-masing sebanyak 16 buah durian yang sudah kering kemudian dikemas secara MAP menggunakan plastik PE ketebalan 0,04 dan 0,06 mm dengan 16 perforasi berdiameter 0,5 cm dan secara vakum. Buah yang sudah dikemas kemudian disimpan pada suhu 13-15°C dan 20-22°C. Respon yang diamati meliputi umur simpan, total padatan terlarut (TPT), keretakan, pH, vitamin C, total asam, warna, tekstur, dan organoleptik. Hasil penelitian menunjukkan penggunaan kemasan vakum menunjukkan kandungan TPT dan tingkat keretakan buah yang lebih rendah dibandingkan dengan kemasan MAP, namun tidak berpengaruh terhadap pH, vitamin C, dan total asam. Jenis kemasan juga tidak berpengaruh terhadap warna buah durian, namun pada tekstur menunjukkan bahwa jenis kemasan vakum dapat mempertahankan tekstur lebih baik dibandingkan dengan kemasan MAP. Buah durian dikemas secara MAP menggunakan plastik PE berketebalan 0,06 mm dengan perforasi 0,5 cm ataupun vakum dan disimpan pada suhu dingin 12-15°C dapat meningkatkan umur simpan buah durian hingga 21 hari.

Identifikasi Tingkat Ketuaan dan Kematangan Pepaya (Carica papaya L.) IPB 1 dengan Pengolahan Citra Digital dan Jaringan Syaraf Tiruan

Agritech Vol 27, No 2 (2007)
Publisher : Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia

Show Abstract | Original Source | Check in Google Scholar

Abstract

The objective of this research was to identify the maturity and ripeness of papaya using image processing and artificial neural network. The images of papaya IPB 1 were captured using digital camera. And then processed using image processing algorithm. The image processing algorithm was developed and applied to 150 samples of papaya from three level of ripeness; growth, mature and ripe and 150 samples of papaya from three level of maturity based on their harvest time. The color indexes and shape factors were extracted from sample images using the developed image processing algorithm. The features extracted from the image processing were used as input to develop artificial neural network that modelled into 7 inputs with the level of maturity and ripeness as output. Neural network program used the value of momentum constant 0.5, learning rate value contant 0.6, sigmoid function value 1 and 10000 iteration. The result showed that the use of 7 image processing features as input on 3 hidden layers provided the highest accuracy of validation of 97.8% in validation process, and 100% accuracy in classifying the papaya based on its maturity and ripeness.ABSTRAKPenelitian ini bertujuan mengidentifikasi ketuaan dan kematangan buah pepaya dengan menggunakan pengolahan citra dan jaringan syaraf tiruan. Citra pepaya diambil menggunakan kamera digital. Citra diproses menggunakan algoritma pengolahan citra. Algoritma pengolahan citra dibangun untuk 150 contoh pepaya dari tiga tingkat kematangan yaitu muda, tua dan matang dan 150 contoh pepaya dari tiga tingkat ketuaan berdasar pada umur petiknya. Indeks warna dan tekstur didapat dari contoh citra menggunakan algoritma pengolahan citra yang dibangun. Hasil pengolahan citra digunakan sebagai input untuk membangun jaringan syaraf tiruan yang dimodelkan dengan 7 input dengan tingkat ketuaan dan kematangan sebagai output. Hasil penelitian menunjukkan bahwa dengan konstanta laju pembelajaran 0.6, konstanta momentum sebesar 0.5, nilai fungsi aktivasi 1 dan dilatih sampai 10000 iterasi serta 3 lapisan tersembunyi pada jaringan syaraf tiruan yang digunakan diperoleh tingkat keakuratan yang tinggi mencapai 97.89% dan 100% pada klasifikasi pepaya berdasarkan ketuaan dan kematangan .