Articles

Found 10 Documents
Search

PENENTUAN KOEFISIEN HIDRAULIK PADA TAPAK NSD, SERPONG, BERDASARKAN METODA UJI PERMEABILITAS IN-SITU Syaeful, Heri; Sucipta, Sucipta
Eksplorium Buletin Pusat Pengembangan Geologi Nuklir Vol 34, No 1 (2013): Mei 2013
Publisher : PPGN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (31.551 KB)

Abstract

Sejalan dengan semakin meningkatnya jumlah limbah radioaktif maka PTLR-BATAN berencana untuk membangun fasilitas Near Surface Disposal (NSD), terutama pada tahap awal adalah fasilitas Demo Plant NSD. NSD merupakansuatu konsep penyimpanan limbah radioaktif tingkat rendah sampai dengan menengah. Aspek yang sangat penting dalam hal studi tapak untuk rencana NSD adalah aspek hidrogeologiterutama yang berkaitan dengan migrasi radionuklida ke lingkungan. Dalam studi migrasi radionuklida parameter awal yang harus diketahui adalah konduktivitas hidraulik. Nilaikonduktivitas hidraulik tanah dan batuan di lokasi tapak dapat diperoleh dengan melakukan uji permeabilitas secara in-situ. Berdasarkan hasil pengujian didapatkan nilai konduktivitastanah dan batuan yang berkisar antara 10-6 sampai 10-2 cm/det. Nilai terbesar konduktivitas hidraulik berada pada satuan tanah lanau kerikilan yang merupakan akuifer di tapak, dengan kedalaman antara 8-24 m, dan nilai konduktivitas hidraulik mencapai 10-2 cm/det. Inline with theincrease of amount of radioactive waste, PTLR-BATAN plans to build the Near Surface Disposal (NSD) facility, especially in the preliminary stages is the Demo Plant of NSD facility. NSD is a low to medium level radioactive waste storage concept. Most important aspect in the site study for planning NSD is hydrogeological aspect especially related to the migration of radionuclides to the environment. In the study of radionuclide migration, a preliminary parameter which is required to know is the hydraulic conductivity in order to deliver the soil and rock hydraulic conductivity values in the site then conducted the in-situ permeability test. Based on the test, obtained soil and rock hydraulic conductivity values ranging from 10-6 to 10-2 cm/sec. The greatest hydraulic conductivity value located in the gravelly silt soil units which is in the site, constitute as aquifer, with depth ranging from 8-24 m, with hydraulic conductivity value reached 10-2 cm/sec.
PENYIMPANAN LESTARI LIMBAH TENORM DARI INDUSTRI MINYAK DAN GAS BUMI Sucipta, Sucipta
Buletin Limbah Vol 13, No 1 (2009): PENYIMPANAN LESTARI LIMBAH TENORM DARI INDUSTRI MINYAK DAN GAS BUMI
Publisher : Buletin Limbah

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

PENYIMPANAN LESTARI LIMBAH TENORM DARI INDUSTRI MINYAK DAN GAS BUMI. Limbah Technically Enhanced Naturally Occurred Radioactive Materials (TENORM) yang berasal dari industri/pertambangan minyak dan gas bumi, wajib dikelola agar tidak mencemari lingkungan dan membahayakan masyarakat. Tahapan pengelolaan yang harus dilakukan meliputi inventarisasi, identifikasi, pengangkutan, on-site dan atau off-site treatment, pewadahan, penyimpanan sementara dan penyimpanan lestari. Dalam makalah ini hanya akan dibahas tentang penyimpanan lestari limbah TENORM. Arahan International Atomic Energy Agency (IAEA) dan pengalaman dari beberapa negara maju dalam penyimpanan lestari limbah TENORM bisa dikaji untuk dikembangkan dan diterapkan di Indonesia. Dengan hasil kajian tersebut maka diharapkan masalah penyimpanan limbah TENORM dapat ditangani dengan baik, yang dilandasi dengan karakterisasi tapak, desain pewadahan, fasilitas disposal dan pengkajian keselamatan yang memadai. Dengan konsep yang optimal maka bisa diterapkan di masa mendatang untuk mendukung program industri nasional yang menjamin keselamatan masyarakat dan lingkungan. DISPOSAL FOR TENORM WASTE FROM OIL AND GAS INDUSTRY. Technically Enhanced Naturally Occurred Radioactive Materials (TENORM) waste, mainly originated from petroleum industry/mining, must be managed to protect the environment and the public from contamination and damage. The steps of the management of TENORM waste include identification, inventory, transport, on-site and or off-site treatment, packaging, storage and disposal. This paper would only explain about disposal for TENORM waste. IAEA recommendation and the experiences of TENORM waste disposal from various advance countries could be assessed to be developed and applied in Indonesia. For this reason there is needed an effort to solve the problem in Indonesia by an appropriate disposal system development which suitable with the wastes and the sites. Based on the results of the study, the problem of waste emplacement could be solved well, based on site characterization, package design, disposal and an appropriate safety assessment. Finally, by finding the optimum concept could be applied in the future to support the national industry program which assure the public and environmental safety.
PENYIMPANAN LESTARI LIMBAH TENORM DARI INDUSTRI MINYAK DAN GAS BUMI Sucipta, Sucipta
Buletin Limbah Vol 13, No 1 (2009): Tahun 2009
Publisher : Buletin Limbah

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (722.618 KB)

Abstract

PENYIMPANAN LESTARI LIMBAH TENORM DARI INDUSTRI MINYAK DAN GAS BUMI. Limbah Technically Enhanced Naturally Occurred Radioactive Materials (TENORM) yang berasal dari industri/pertambangan minyak dan gas bumi, wajib dikelola agar tidak mencemari lingkungan dan membahayakan masyarakat. Tahapan pengelolaan yang harus dilakukan meliputi inventarisasi, identifikasi, pengangkutan, on-site dan atau off-site treatment, pewadahan, penyimpanan sementara dan penyimpanan lestari. Dalam makalah ini hanya akan dibahas tentang penyimpanan lestari limbah TENORM. Arahan International Atomic Energy Agency (IAEA) dan pengalaman dari beberapa negara maju dalam penyimpanan lestari limbah TENORM bisa dikaji untuk dikembangkan dan diterapkan di Indonesia. Dengan hasil kajian tersebut maka diharapkan masalah penyimpanan limbah TENORM dapat ditangani dengan baik, yang dilandasi dengan karakterisasi tapak, desain pewadahan, fasilitas disposal dan pengkajian keselamatan yang memadai. Dengan konsep yang optimal maka bisa diterapkan di masa mendatang untuk mendukung program industri nasional yang menjamin keselamatan masyarakat dan lingkungan. DISPOSAL FOR TENORM WASTE FROM OIL AND GAS INDUSTRY. Technically Enhanced Naturally Occurred Radioactive Materials (TENORM) waste, mainly originated from petroleum industry/mining, must be managed to protect the environment and the public from contamination and damage. The steps of the management of TENORM waste include identification, inventory, transport, on-site and or off-site treatment, packaging, storage and disposal. This paper would only explain about disposal for TENORM waste. IAEA recommendation and the experiences of TENORM waste disposal from various advance countries could be assessed to be developed and applied in Indonesia. For this reason there is needed an effort to solve the problem in Indonesia by an appropriate disposal system development which suitable with the wastes and the sites. Based on the results of the study, the problem of waste emplacement could be solved well, based on site characterization, package design, disposal and an appropriate safety assessment. Finally, by finding the optimum concept could be applied in the future to support the national industry program which assure the public and environmental safety.
OPTIMASI PENEMPATAN DISPOSAL DEMO DALAM LINGKUNGAN GEOLOGI KAWASAN NUKLIR SERPONG Sucipta, Sucipta
Buletin Limbah Vol 16, No 2 (2013): Desember 2013
Publisher : Buletin Limbah

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (11.976 KB)

Abstract

OPTIMASI PENEMPATAN DISPOSAL DEMO DALAM LINGKUNGAN GEOLOGI KAWASAN NUKLIR SERPONG. Untuk memenuhi kebutuhan penyimpanan akhir sebagai fasilitas nasional pelayanan pengelolaan limbah radioaktif non PLTN dan sebagai demo-plant, akan dibangun dan dioperasikan fasilitas near surface disposal (NSD) di Kawasan Nuklir Serpong. Penyediaan fasilitas tersebut wajib mempertimbangkan aspek keselamatan masyarakat dan lingkungan. Untuk itu maka perlu dilakukan optimasi penempatan fasilitas disposal dalam lingkungan geologi berdasarkan data limbah dan data lingkungan geologi tapak sehingga sesuai dengan daya dukung lahan maupun keselamatan lingkungan. Aspek lingkungan geologi yang perlu dipertimbangkan meliputi geomorfologi, litostratigrafi, struktur geologi, geologi teknik, hidrogeologi dan potensi bencana geologi. Sasaran akhir penelitian adalah diperoleh disain fasilitas penyimpanan lestari limbah radioaktif aktivitas rendah, yang dirancang memenuhi kriteria keselamatan, yang siap untuk dilakukan konstruksi dan operasi. Berdasarkan data limbah dan karakteristik lingkungan geologi tapak Kawasan Nuklir Serpong, telah dilakukan optimasi penempatan disposal demo yang sesuai. Disposal demo yang diusulkan adalah tipe NSD dengan layout berbentuk bujur sangkar berukuran 34,60 m x 34,60 m dan tinggi 4,5 m, ditempatkan pada kedalaman 2 m dan gundukan (termasuk penutup) setinggi 2,5 m. NSD berada pada residual soil, dengan jarak antara fondasi dan muka air tanah terdangkal sebesar minimum 4 m. Konsep teknologi fasilitas NSD terdiri dari dua vault kompartemen kembar beton bertulang (reinforced concrete vault) yang dilengkapi dengan semua sistem pendukungnya. Vault sisi kiri untuk menampung paket limbah dalam shell beton 950 l sebanyak 72 shell beton dengan susunan lajur 6, baris 6 dan tumpukan 2. Vault sisi kanan untuk menampung paket limbah dalam drum 200 l sebanyak 675 drum dengan susunan lajur 15, baris 15 dan tumpukan 3. Kata kunci : optimasi, penempatan, disposal, lingkungan geologi OPTIMIZATION OF DEMONSTRATION DISPOSAL PLACEMENT IN THE GEOLOGICAL ENVIRONMENT AT SERPONG NUCLEAR AREA. To meet the need of disposal as a national facility in services of non NPP radioactive waste management and as a demonstration plant, the near surface disposal (NSD) facility will be constructed and operated at Serpong Nuclear Area. The facility shall consider safety aspects of the public and the environment. So that, the optimization of disposal placement in the geological environment needs to be performed based on the data of waste and geological environment of the site to meet the suitability with the land capability and environmental safety. The aspects of environmental geology that must be considered are geomorphology, lithostratigraphy, geological structure, engineering geology, hydrogeology and potency of geological hazards. The end target of the study is to obtain the design of low level radioactive waste disposal facility, that is designed to meet the safety criteria, and ready to be constructed and operated. Based on the data of waste and characteristic of geological environment of Serpong Nuclear Area, the suitable optimization of demonstration disposal placement has been performed. The proposed demonstration disposal is NSD type with layout as a square 34,60 m x 34,60 m and 4,5 m in height, placed on 2 m depth and mound (include cover) 2,5 m. NSD located on residual soil zone, with minimum distance between base of foundation to highest groundwater level is 4 m. The proposed technological concept of NSD facility consists of two reinforced concrete vault, completed with all supporting system. Left vault to accomodate 72 waste packages in concrete shell 950 l with configuration 6 line, 6 column and 2 overlay. Right vault is to accomodate 675 waste packages in drum 200 l with configuration 15 line, 15 column and 3 overlay
DETERMINATION OF CONCRETE VAULT THICKNESS OF NEAR SURFACE DISPOSAL FOR RADIOACTIVE WASTE AT SERPONG NUCLEAR AREA Sucipta, Sucipta; Suhartono, Suhartono
Jurnal Pengembangan Energi Nuklir Vol 19, No 2 (2017): Desember 2017
Publisher : Pusat Kajian Sistem Energi Nuklir, Badan Tenaga Nuklir Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (942.158 KB) | DOI: 10.17146/jpen.2017.19.2.3624

Abstract

In order to support and complement the radioactive waste management facilities in Indonesia, BATAN will build a demonstration disposal facility in Serpong Nuclear Area (SNA). Demonstration disposal that will be built is Near Surface Disposal (NSD) type. Engineered vault for NSD is reinforced concrete. The calculations for determining the thickness of NSD concrete vault is based on the conceptual design as the result of the placement optimization of  demonstration disposal that takes into account the inventory of radioactive waste and environmental geology conditions of the site at Serpong Nuclear Area. The thickness of the vault in this paper is focused on its ability to withstand radiation from stored waste so that workers or people who are around the disposal facility is safe with maximum radiation dose limit rate of 0.3 μSv / h. The calculation is performed with the aid of MicroShield 7:02 and Rad Pro Calculator Version 3:26 software. From the calculation so that the dose rate at the outer surface of the vault to be 0.3 μSv / h, required walls made of concrete with a density of 2:35 g / cm3 is 62.8 cm thickness.
STUDI GEOLOGI TEKNIK TAPAK PENYIMPANAN AKHIR LIMBAH RADIOAKTIF (LRA) DEMO PLANT TIPE NSD KEDALAMAN MENENGAH DI PUSPIPTEK, SERPONG Syaeful, Heri; Sucipta, Sucipta; Sadisun, Imam Achmad
Eksplorium Buletin Pusat Teknologi Bahan Galian Nuklir Vol 35, No 1 (2014): Mei 2014
Publisher : PTBGN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (31.551 KB)

Abstract

Penyimpanan akhir limbah radioaktif bertujuan untuk menjaga agar zat radioaktif tidak terlepas ke lingkungan sampai aktivitas zat tersebut turun ke level yang aman. Konsep penyimpanan akhir limbah radioaktif (LRA) yang akan dikembangkan di area Pusat Penelitian Ilmu Pengetahuan dan Teknologi (Puspiptek), Serpong adalah penyimpanan akhir limbah radioaktif dekat permukaan (near surface disposal - NSD). NSD berdasarkan kedalaman terbagi dua macam yaitu NSD dekat permukaan dan NSD kedalaman menengah. Konsep NSD pada penelitian ini adalah NSD kedalaman menengah, yaitu antara 30 – 300 meter. Pada saat konstruksi NSD di kedalaman menengah dibutuhkan pekerjaan ekskavasi bawah permukaan atau pembuatan terowongan. Analisis tegangan in-situ dan deformasi bawah permukaan dilakukan untuk mengetahui besaran dan distribusi tegangan yang terbentuk di dalam tanah/batuan serta deformasi yang terjadi pada saat dilakukan ekskavasi bawah permukaan. Berdasarkan analisis diketahui nilai tegangan dan sebaran tegangan tensional maupun kompresional berkisar antara -441 kPa sampai 4,028 kPa dengan nilai deformasi alami atau tanpa perkuatan antara 4.4 cm sampai 13.5 cm. Nilai deformasi yang cukup besar dimana mencapai 13.5 cm menunjukkan diperlukan rekayasa perkuatan pada saat ekskavasi. Desain rekayasa perkuatan pada setiap tahapan ekskavasi mengacu hasil pemodelan pola distribusi tegangan dan deformasi
Penentuan Koefisien Hidraulik pada Tapak NSD, Serpong, Berdasarkan Metoda Uji Permeabilitas In-Situ Syaeful, Heri; Sucipta, Sucipta
EKSPLORIUM Vol 34, No 1 (2013): Mei 2013
Publisher : Pusat Teknologi Bahan Galian Nuklir - BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (420.343 KB)

Abstract

Sejalan dengan semakin meningkatnya jumlah limbah radioaktif maka PTLR-BATAN berencana untuk membangun fasilitas Near Surface Disposal (NSD), terutama pada tahap awal adalah fasilitas Demo Plant NSD. NSD merupakan suatu konsep penyimpanan limbah radioaktif tingkat rendah sampai dengan menengah. Aspek yang sangat penting dalam hal studi tapak untuk rencana NSD adalah aspek hidrogeologi terutama yang berkaitan dengan migrasi radionuklida ke lingkungan. Dalam studi migrasi radionuklida parameter awal yang harus diketahui adalah konduktivitas hidraulik. Nilai konduktivitas hidraulik tanah dan batuan di lokasi tapak dapat diperoleh dengan melakukan uji permeabilitas secara in-situ. Berdasarkan hasil pengujian didapatkan nilai konduktivitas tanah dan batuan yang berkisar antara 10-6 sampai 10-2 cm/det. Nilai terbesar konduktivitas hidraulik berada pada satuan tanah lanau kerikilan yang merupakan akuifer di tapak, dengan kedalaman antara 8-24 m, dan nilai konduktivitas hidraulik mencapai 10-2 cm/det. Inline with the increase of amount of radioactive waste, PTLR-BATAN plans to build the Near Surface Disposal (NSD) facility, especially in the preliminary stages is the Demo Plant of NSD facility. NSD is a low to medium level radioactive waste storage concept. Most important aspect in the site study for planning NSD is hydrogeological aspect especially related to the migration of radionuclides to the environment. In the study of radionuclide migration, a preliminary parameter which is required to know is the hydraulic conductivity in order to deliver the soil and rock hydraulic conductivity values ​​in the site then conducted the in-situ permeability test. Based on the test, obtained soil and rock hydraulic conductivity values​ranging from 10-6 to 10-2 cm/sec. The greatest hydraulic conductivity value located in the gravelly silt soil units which is in the site, constitute as aquifer, with depth ranging from 8-24 m, with hydraulic conductivity value ​​reached 10-2 cm/sec.
Studi Geologi Teknik Tapak Penyimpanan Akhir Limbah Radioaktif (LRA) Demo Plant Tipe NSD Kedalaman Menengah di Puspiptek, Serpong Syaeful, Heri; Sucipta, Sucipta; Sadisun, Imam Achmad
EKSPLORIUM Vol 35, No 1 (2014): Mei 2014
Publisher : Pusat Teknologi Bahan Galian Nuklir - BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2717.799 KB)

Abstract

Penyimpanan akhir limbah radioaktif bertujuan untuk menjaga agar zat radioaktif tidak terlepas ke lingkungan sampai aktivitas zat tersebut turun ke level yang aman. Konsep penyimpanan akhir limbah radioaktif (LRA) yang akan dikembangkan di area Pusat Penelitian Ilmu Pengetahuan dan Teknologi (Puspiptek), Serpong adalah penyimpanan akhir limbah radioaktif dekat permukaan (near surface disposal - NSD). NSD berdasarkan kedalaman terbagi dua macam yaitu NSD dekat permukaan dan NSD kedalaman menengah. Konsep NSD pada penelitian ini adalah NSD kedalaman menengah, yaitu antara 30–300 meter. Pada saat konstruksi NSD di kedalaman menengah dibutuhkan pekerjaan ekskavasi bawah permukaan atau pembuatan terowongan. Analisis tegangan in-situ dan deformasi bawah permukaan dilakukan untuk mengetahui besaran dan distribusi tegangan yang terbentuk di dalam tanah/batuan serta deformasi yang terjadi pada saat dilakukan ekskavasi bawah permukaan. Berdasarkan analisis diketahui nilai tegangan dan sebaran tegangan tensional maupun kompresional berkisar antara -441 kPa sampai 4,028 kPa dengan nilai deformasi alami atau tanpa perkuatan antara 4,4 cm sampai 13,5 cm. Nilai deformasi yang cukup besar dimana mencapai 13,5 cm menunjukkan diperlukan rekayasa perkuatan pada saat ekskavasi. Desain rekayasa perkuatan pada setiap tahapan ekskavasi mengacu hasil pemodelan pola distribusi tegangan dan deformasi. Final disposal of radioactive waste intended to keep radioactive substances does not released to the environment until the substance activity decreased to the safe level. Storage concept of radioactive waste (RAW) final disposal that will be developed at the area of Puspiptek, Serpong is near surface disposal (NSD). Based on depth, NSD divided on two type, near surface NSD and medium depth NSD. Concept NSD in this research is medium depth NSD, which is between 30–300 meters. During NSD construction in medium-depth required the works of sub-surface excavation or tunneling. Analysis of in-situ stresses and sub-surface deformation performed to recognize the stress magnitude and its distribution that developed in soil/rock as well as the deformation occurred when sub-surface excavation takes place. Based on the analysis, acknowledged the magnitude of tensional and compression stress and its distribution that range from -441 kPa to 4.028 kPa with values of natural deformation or without reinforcement between 4.4 to 13.5 cm. A rather high deformation value which is achieved 13.5 cm leads to necessity of engineering reinforcement during excavation. The designs of engineering reinforcement on every excavation stage refer to the result of modeling analysis of stress and deformation distribution pattern.
Arah dan Kecepatan Aliran Air Tanah Calon Tapak Disposal Demo di Kawasan Nuklir Serpong Sucipta, Sucipta; Setiawan, Risdiyana
EKSPLORIUM Vol 37, No 2 (2016): November 2016
Publisher : Pusat Teknologi Bahan Galian Nuklir - BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (511.829 KB) | DOI: 10.17146/eksplorium.2016.37.2.3073

Abstract

ABSTRAKRencana pembangunan dan pengoperasian fasilitas disposal demo di Kawasan Nuklir Serpong memerlukan pengkajian keselamatan untuk memberikan bukti ilmiah bahwa fasilitas tersebut aman bagi keselamatan manusia dan lingkungan. Hasil dari pengkajian keselamatan tersebut digunakan sebagai dasar pemberian izin lingkungan untuk pembangunan dan pengoperasian fasilitas tersebut. Salah satu data tapak yang diperlukan dalam pengkajian keselamatan adalah arah dan kecepatan aliran air tanah. Oleh karena itu dilakukan penelitian untuk mengetahui arah dan kecepatan aliran air tanah pada zona akuifer bawah calon tapak disposal demo di Kawasan Nuklir Serpong. Penelitian dilakukan dengan menggunakan perunut (tracer) Rhodamin WT. Perunut dilepas pada sumur bor  utama (SBU) dan dipantau pada lubang bor (sumur bor pantau) SBP-1 (A), SBP-2 (B), dan SBP-3 (C). Dari hasil analisis contoh air dan analisis keruangan diperoleh data arah aliran air tanah pada kedalaman 16 m ke arah N 240º E (barat-barat daya) dengan kecepatan antara 0,35 m/hari sampai dengan 0,48 m/hari. ABSTRACTPlan for construction and operation of demo disposal facility in Serpong Nuclear Area requires safety assessments to provide scientific evidence that the facility is safe for human and the environment. The result of the safety assessment is used also as a basis for granting environmental permits for the construction and operation of the facility. One of the site data requirements on the safety assessment is the direction and velocity of groundwater flow. Therefore, a study to determine the direction and velocity of groundwater flow at lower zone aquifer of demo disposal site candidate in Serpong Nuclear Area conducted. The research was carried out by using Rhodamin WT tracer. The tracer released in the main well (SBU) and monitored in SBP-1 (A), SBP-2 (B), and SBP-3 (C) boreholes. Based on the water samples and spatial analysis, groundwater data flow direction at a depth of 16 m towards N 240º E (west-southwest) with a velocity of 0.35 m/day up to 0.48 m/day obtained.
Radionuclide Release Prediction in Water and Soil at Demonstration Plant of Near Surface Disposal for Radioactive Waste Dewanto, Pandu; Moersidik, Setyo Sarwanto; Sucipta, Sucipta
Indonesian Journal of Physics and Nuclear Applications Vol 1 No 2 (2016)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (703.843 KB) | DOI: 10.24246/ijpna.v1i2.116-122

Abstract

Near Surface Disposal (NSD) for Radioactive Waste that should be developed due to increment of the low level radioactive waste, need to be analyzed and evaluated related to the radiological impact of the environment. A research method applied is done by modeling the distribution of radionuclide releases process. Analysis related with the releases of radionuclide in water and soil is using PRESTO (Prediction of Radiological Effects Due to Shallow Trench Operations). The application scenarios selected in this safety assessment is the migrations of Co-60 and Cs-137 scenario through the shallow groundwater flow pattern in the NSD site. The SigmaPlot software is also used to determine the concentration equation in well water and river water. The final results showed the concentration of radionuclide in wells and streams below the provision. Radionuclide activity concentrations in well ranged from 10-10Bq/m3 to 100Bq/m3 and in the river ranged from 10-15Bq / m3 to 10-1Bq / m3. The impact of radioactive waste of radionuclide Co-60 and Cs-137 will decrease to the background radiation level at a distance less than 10m and penetrate into the saturated layer up to 4m. In this study, an equation have been obtained that can predict radionuclide concentration patterns based on the distance and the depth of the ground surface against to the facility operation time.