Devi Anastasia Shinta
Unknown Affiliation

Published : 2 Documents
Articles

Found 2 Documents
Search

PERLUASAN DARI RING REGULAR Shinta, Devi Anastasia; Sumanto, YD
Jurnal Matematika Vol 2, No 3 (2013): JURNAL MATEMATIKA
Publisher : Jurnal Matematika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (289.445 KB)

Abstract

Regular ring R is a nonempty set with two binary operations that satisfied ring axioms and qualifies for any x in R there is y in R such that x=xyx. Regular ring R ̃ is a ring of the set of endomorphism R^+ with identity. For any regular ring R and R´ can be defined a bijective mapping from R to R´ that satisfies ring homomorphism axioms or in the otherwords that mapping is an isomorphism from R to R´. By using the concept of regular ring and ring isomorphism can be determined extension of regular ring. Regular ring R is said to be embedded in regular ring R^R ̃  if there exists a subring R^0 of R^R ̃  such that R is isomorphic to R^0. Furthermore, regular ring R^R ̃  can be said as an extension of regular ring R.
PERLUASAN DARI RING REGULAR Shinta, Devi Anastasia; Sumanto, YD
Jurnal Matematika Vol 2, No 3 (2013): JURNAL MATEMATIKA
Publisher : Jurnal Matematika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (289.445 KB)

Abstract

Regular ring R is a nonempty set with two binary operations that satisfied ring axioms and qualifies for any x in R there is y in R such that x=xyx. Regular ring R ̃ is a ring of the set of endomorphism R^+ with identity. For any regular ring R and R´ can be defined a bijective mapping from R to R´ that satisfies ring homomorphism axioms or in the otherwords that mapping is an isomorphism from R to R´. By using the concept of regular ring and ring isomorphism can be determined extension of regular ring. Regular ring R is said to be embedded in regular ring R^R ̃  if there exists a subring R^0 of R^R ̃  such that R is isomorphic to R^0. Furthermore, regular ring R^R ̃  can be said as an extension of regular ring R.