Tutik Setianingsih
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran Malang 65145

Published : 5 Documents
Articles

Found 5 Documents
Search

Study of Structural Properties of Mesoporous Carbon From Fructose with Zinc Borosilicate Activator Setianingsih, Tutik; Kartini, Indriana; Arryanto, Yateman
The Journal of Pure and Applied Chemistry Research Vol 3, No 3 (2014)
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (446.981 KB)

Abstract

Structural properties, including pore structure, functional group of carbon surface, and crystal structure of carbon built by zinc borosilicate (ZBS) and ZnCl2 (Z) have been investigated in this work. Physically, ZBS and ZnCl2 may act as template of carbon, whereas the Zn(II) cation act as chemical activator of carbonization. All precursors of ZBS (silicagel, boric acid, and ZnCl2) may act as catalysts of caramelization. The caramelization was conducted hydrothermally at 85oC and thermally 130oC. The carbonization was conducted at 450oC. The resulted carbons were washed by using HF 48% solution, 1M HCl solution, and aquadest respectively. The solid products were characterized by using nitrogen gas adsorption, infrared spectrophotometry, X-ray diffraction, and Transmition Electron Microscopy. Result of research showed that ZBS built larger mesopore volume, larger pore domination of pore size, more hydrophobic carbon, and more amorf than ZnCl2.
The Effect of Caramelization and Carbonization Temperatures toward Structural Properties of Mesoporous Carbon from Fructose with Zinc Borosilicate Activator Setianingsih, Tutik; Kartini, Indriana; Arryanto, Yateman
Indonesian Journal of Chemistry Vol 14, No 3 (2014)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (595.66 KB) | DOI: 10.22146/ijc.21236

Abstract

Mesoporous carbon was prepared from fructose using zinc borosilicate (ZBS) activator. The synthesis involves caramelization and carbonization processes. The effect of both process temperature toward porosity and functional group of carbon surface are investigated in this research. The caramelization was conducted hydrothermally at 85 and 100 °C, followed by thermally 130 °C. The carbonization was conducted at various temperatures (450–750 °C). The carbon-ZBS composite were washed by using HF 48% solution, 1M HCl solution, and aquadest respectively to remove ZBS from the carbon. The carbon products were characterized with nitrogen gas adsorption-desorption method, FTIR spectrophotometry, X-ray diffraction, and Transmission Electron Microscopy. The highest mesopore characteristics is achieved at 100 °C (caramelization) and 450 °C (carbonization), including Vmeso about 2.21 cm3/g (pore cage) and 2.32 cm3/g (pore window) with pore uniformity centered at 300 Å (pore cage) and 200 Å (pore window), containing the surface functional groups of C=O and OH, degree of graphitization about 57% and aromaticity fraction about 0.68.
Synthesis of Patchouli Biochar Cr2O3 Composite Using Double Acid Oxidators for Paracetamol Adsorption Setianingsih, Tutik; Masruri, Masruri; Ismuyanto, Bambang
The Journal of Pure and Applied Chemistry Research Vol 7, No 1 (2018): Edition January-April 2018
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1273.296 KB) | DOI: 10.21776/ub.jpacr.2018.007.01.367

Abstract

Composite built by patchouli biochar and metal oxide, Cr2O3, is a potential material for remediation of contaminated wasterwater. Oxidation of biochar using acid or salt oxidators can improve its surface polar functional groups. This treatment may be able to increase impregnation of  metal cation (as salt) before calcination to form its oxide. In this research, 3 types of oxidators were used to oxidize the biochar before impregnation with purpose to study its influence toward physichochemistry and adsorption performance of the composite. Preparation of the composite included 3 steps, including preparation of biochar by pyrolisis of patchouli biomass using ZnCl2 activator at 450 oC, oxidation of the biochar using 3 different oxidators (H2SO4-HNO3, H3PO4-HNO3, H2O2–HNO3) at 60 oC,  impregnation of the oxidized biochar using CrCl3 followed by calcination process to form biochar–Cr2O3 composite at 600 oC. Characterization using X-ray diffraction indicated that the composite containes the Cr2O3 structure.  FTIR spectrophotometry characterization indicates the different content of C=O, C-O, and –OH on the composite surface. SEM images shows irregular micro ball shapes. EDX characterization indicates the different Cr content in the composite with same sequence with FTIR absorbances of  both C-O and –OH. Adsorption of paracetamol  indicates effect of Cr2O3 showing the same sequence of both. 
CHARACTERIZATION OF IMMOBILIZED LIPASE IN ALUMINOSILICATE FOR LACTOSYL PALMITATE SYNTHESIS Roosdiana, Anna; Setianingsih, Tutik; Mardiana, Diah; Suratmo, Suratmo
Indonesian Journal of Chemistry Vol 9, No 2 (2009)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (198.94 KB) | DOI: 10.22146/ijc.21530

Abstract

Whey lactose can be esterified enzymatically by using immobilized lipase. The lipase can be isolated from Rhizopus oryzae, purified and immobilized in mesoporous aluminosilica. The use of immobilized lipase has advantages, there are longer shelf life and repeatable use. It is necessary to characterize the immobilized lipase dan ester product. The aim of the research was to characterize immobilized lipase, including determination lipase adsorption type in mesoporous aluminosilicate, immobilized lipase stability during storage time, efficiency of repetitive use of immobilized lipase. The result showed that lipase adsorption in mesoporous aluminosilicate was physical adsorption type through hydrogen bound and electrostatic interaction. Immobilized lipase stability was relatively constant at storage temperature 5 °C for 25 days resulting in 98.16% of initial activity. The repetitive use of immobilized lipase showed efficient until 5 uses within activity of 50.22%. The IR spectra of lactosyl palmitate from both whey and pure lactose result showed bands at wavelength number of 3462 cm-1(OH bond), 1739 cm-1 and 1747 (C=O ester bond) 1295 cm-1 dan 1242 cm-1 (C-O ester bond). In addition, the HLB value for lactosyl palmitate (whey) 4.708 and lactosyl palmitate (pure lactose) 4.715, therefore both lactosyl palmitate is appropriate as emulgator in W/O.   Keywords: immobilized lipase, aluminosilica, lactose, whey, lactosyl palmitate
STUDY OF NaOH - ACTIVATION TEMPERATURE INFLUENCE TOWARD CHARACTER OF MESOPOROUS CARBON BASED ON TEXTILE SLUDGE WASTE Setianingsih, Tutik; Hasanah, Uswatun; Darjito, Darjito
Indonesian Journal of Chemistry Vol 8, No 3 (2008)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (905.384 KB) | DOI: 10.22146/ijc.21590

Abstract

Textile sludge waste contains many organic matters so that it is potential to be used as mesoporous carbon precursor. Actived carbon with mesopore character is effective as adsorbent and catalyst carrier of large molecules. Synthesis of the activated mesoporous carbon was done with purpose to study influence of activation temperature toward characters of the carbon. Process of the synthesis involved dry sludge (50 g) as precursor, concentrated sodium silicate solution SiO2 24.5% and Na2O 7.5% (50 mL) as template source, 1 M HCl solution (50 mL) as polimering agent, carbonization condition at 600 °C 3 h under nitrogen gas flow, activation conditions with NaOH 50% and various temperatures (400, 500, 600, 700, and 800 °C), and demineralizatin conditions with 0.1 M HCl solution for 4 h and 125 rpm. All of the products were characterized with methylen blue method to determine specific pore volume and specific surface area. The carbon obtained at optimum temperature was characterized again with surface area analyzer. Result of the research showed that the optimum condition was achieved at activation temperature of 500 °C. Characters of the synthesized carbon at the optimum condition were specific surface area of 638.32 m2/g, specific pore volume of 0.35 cm3/g, average pore diameter of 21.78 Å, and methylene blue number of 358.87 mg/g.   Keywords: actived mesoporous carbon, textile sludge, temperature