Santi Puteri Rahayu
Jurusan Statistika Institut Teknologi Sepuluh Nopember (ITS) Surabaya

Published : 3 Documents
Articles

Found 3 Documents
Search

Analisis Pola Hubungan Kerugian Negara Akibat Korupsi Dengan Demografi Koruptor Rahmana, Amilia Firda; Rahayu, Santi Puteri
Jurnal Sains dan Seni ITS Vol 2, No 2 (2013)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (680.837 KB)

Abstract

Masalah korupsi bukan lagi masalah baru dalam persoalan hukum dan ekonomi bagi suatu negara. Hasil survei Transparansi Internasional Indonesia menunjukkan bahwa Indonesia merupakan negara terkorup nomor 6 dari 133 negara. Berdasarkan informasi dari Kepolisian Negara Republik Indonesia (Polri), kasus korupsi meningkat sebesar 52,8 persen dari tahun 2011 hingga 2012. Meningkatnya kasus korupsi dan dampak dari tahun ke tahun membuat penulis tertarik untuk melakukan penelitian tentang kasus korupsi. Tujuan dari penelitian ini adalah mengetahui karakteristik demografi kasus dugaan korupsi yang terjadi di Jawa Timur, signifikansi dependensi besarnya kerugian negara akibat korupsi dengan variabel demografi koruptor di Jawa Timur, dan pola hubungan kerugian negara akibat korupsi dengan demografi koruptor di Jawa Timur. Variabel pada penelitian ini adalah kerugian Negara, usia, jenis kelamin, daerah kejaksaan, pekerjaan, dan pendidikan. Metode analisis yang digunakan adalah statistika deskriptif, analisis korespondensi, dan analisis model log linear. Hasil statistika deskriptif menerangkan bahwa mayoritas koruptor di Jawa Timur melakukan korupsi antara 100 juta hingga 1 Milyar Rupiah sebesar 47 persen. Kerugian Negara memiliki hubungan yang signifikan dengan usia, daerah kejaksaan, pekerjaan, dan pendidikan.
Pemodelan Faktor-faktor yang Mempengaruhi Tingkat Pengangguran Terbuka di Provinsi Jawa Timur Tahun 2015 Menggunakan Regresi Spasial Ningtias, Ida Puspita; Rahayu, Santi Puteri
Jurnal Sains dan Seni ITS Vol 6, No 2 (2017)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (279.554 KB) | DOI: 10.12962/j23373520.v6i2.24984

Abstract

Pada penelitian ini, regresi spasialĀ  digunakan untuk mengetahui faktor-faktor yang mempengaruhi tingkat pengangguran terbuka di Provinsi Jawa Timur tahun 2015. Aspek spasial diduga sebagai salah satu faktor yang berpengaruh terhadap tingkat pengangguran terbuka. Pengangguran terbuka terjadi karena jumlah penduduk meningkat sehingga menyebabkan jumlah angkatan kerja meningkat namun jumlah penduduk yang bekerja tidak meningkat. Penelitian ini bertujuan untuk menggambarkan karakteristik faktor-faktor yang diduga mempengaruhi tingkat pengangguran terbuka di Provinsi Jawa Timur kemudian dilanjutkan dengan pemodelan menggunakan regresi spasial. Data yang digunakan bersumber dari website Badan Pusat Statistik (BPS) Provinsi Jawa Timur serta publikasi Keadaan Angkatan Kerja di Jawa Timur Agustus 2015. Berdasarkan hasil analisis dan pembahasan, tingkat pengangguran terbuka pada kabupaten dan kota terhadap kategori tinggi memusat di Provinsi Jawa Timur sebelah timur laut sedangkan untuk kategori sedang dan rendah tersebar di seluruh kabupaten dan kota di Provinsi Jawa Timur. Hasil pemodelan regresi spasial diperoleh spatial error model menggunakan bobot rook contiguity merupakan model terbaik sebab memiliki nilai AIC paling rendah diantara multiple linier regression dan spatial autoregressive model. Variabel yang signifikan berpengaruh terhadap spatial error model adalah persentase penduduk miskin serta distribusi PDRB atas dasar harga berlaku menurut lapangan usaha jasa lainnya. Kabupaten Gresik dan Kabupaten Sidoarjo merupakan dua kabupaten yang paling mempengaruhi spatial error model Kota Surabaya dimana kota ini sebagai ibukota Provinsi Jawa Timur.
Hybrid model for forecasting space-time data with calendar variation effects Suhartono, Suhartono; Dana, I Made Gde Meranggi; Rahayu, Santi Puteri
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.10096

Abstract

The aim of this research is to propose a new hybrid model, i.e. Generalized Space-Time Autoregressive with Exogenous Variable and Neural Network (GSTARX-NN) model for forecasting space-time data with calendar variation effect. GSTARX model represented as a linear component with exogenous variable particularly an effect of calendar variation, such as Eid Fitr. Whereas, NN was a model for handling a nonlinear component. There were two studies conducted in this research, i.e. simulation studies and applications on monthly inflow and outflow currency data in Bank Indonesia at East Java region. The simulation study showed that the hybrid GSTARX-NN model could capture well the data patterns, i.e. trend, seasonal, calendar variation, and both linear and nonlinear noise series. Moreover, based on RMSE at testing dataset, the results of application study on inflow and outflow data showed that the hybrid GSTARX-NN models tend to give more accurate forecast than VARX and GSTARX models. These results in line with the third M3 forecasting competition conclusion that stated hybrid or combining models, in average, yielded better forecast than individual models.