Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering (IJECE)

MATLAB/SIMULINK SIMULATION OF UNIFIED POWER QUALITY CONDITIONER-BATTERY ENERGY STORAGE SYSTEM SUPPLIED BY PV-WIND HYBRID USING FUZZY LOGIC CONTROLLER Amirullah, Amirullah; Penangsang, Ontoseno; Soeprijanto, Adi
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 3: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1399.113 KB) | DOI: 10.11591/ijece.v9i3.pp1479-1495

Abstract

This paper presents performance analysis of Unified Power Quality Conditioner-Battery Energy Storage (UPQC-BES) system supplied by Photovoltaic (PV)-Wind Hybrid connected to three phase three wire (3P3W) of 380 volt (L-L) and 50 hertz distribution system. The performance of supply system is compared with two renewable energy (RE) sources i.e. PV and Wind, respectively. Fuzzy Logic Controller (FLC) is implemented to maintain DC voltage across the capacitor under disturbance scenarios of source and load as well as to compare the results with Proportional Intergral (PI) controller. There are six scenarios of disturbance i.e. (1) non-linear load (NL), (2) unbalance and nonlinear load (Unba-NL), (3) distortion supply and non-linear load (Dis-NL), (4) sag and non-linear load (Sag-NL), (5) swell and non-linear load (Swell-NL), and (6) interruption and non-linear load (Inter-NL). In disturbance scenario 1 to 5, implementation of FLC on UPQC-BES system supplied by three RE sources is able to obtain average THD of load voltage/source current slightly better than PI. Furthermore under scenario 6, FLC applied on UPQC-BES system supplied by three RE sources gives significantly better result of average THD of load voltage/source current than PI. This research is simulated using Matlab/Simulink.
POWER-FLOW DEVELOPMENT BASED ON THE MODIFIED BACKWARD-FORWARD FOR VOLTAGE PROFILE IMPROVEMENT OF DISTRIBUTION SYSTEM Suyanto, Suyanto; Rahmadhani, Citra; Penangsang, Ontoseno; Soeprijanto, Adi
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 5: October 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (447.169 KB) | DOI: 10.11591/ijece.v6i5.pp2005-2014

Abstract

Unbalanced three-phase radial distribution system has a complex problem in power system. It has many branches and it is sometimes voltage profile?s not stable at every end branches. For improvement of voltage profile, it can be performed by penetrating of a distributed generation models. Information of voltage profile can be gained by study of power flow.  The Modified Backward-Forward is one of the most widely used methods of development of power flow and has been extensively used for voltage profile analysis. In this paper, a study of power flow based on the Modified Backward-Forward method was used to capture the complexities of unbalanced three phase radial distribution system in the 20 kV distribution network in North Surabaya city, East Java, Indonesia within considering distributed generation models. In summary, for the informants in this study, the Modified Backward-Forward method has had quickly convergence and it?s just needed 3 to 5 iteration of power flow simulation which?s compared to other power flow development methods. Distributed Generation models in the modified the modified 34 BUS IEEE system and 20 kV distribution network has gained voltage profile value on limited range. One of the more significant findings to emerge from this development is that the Modified Backward-Forward method has average of error voltage about 0.0017 % to 0.1749%.