Mushthofa Mushthofa
Bogor Agricultural University

Published : 2 Documents
Articles

Found 2 Documents
Search

The Formation of Optimal Portfolio of Mutual Shares Funds using Multi-Objective Genetic Algorithm Arkeman, Yandra; Yusuf, Akhmad; Mushthofa, Mushthofa; Fitri Laxmi, Gibtha; Boro Seminar, Kudang
TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol 11, No 3: September 2013
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (165.654 KB)

Abstract

Investments in financial assets have become a trend in the globalization era, especially the investment in mutual fund shares. Investors who want to invest in stock mutual funds can set up an investment portfolio in order to generate a minimal risk and maximum return. In this study the authors used the Multi-Objective Genetic Algorithm Non-dominated Sorting II (MOGA NSGA-II) technique with the Markowitz portfolio principle to find the best portfolio from several mutual funds. The data used are 10 company stock mutual funds with a period of 12 months, 24 months and 36 months. The genetic algorithm parameters used are crossover probability of 0.65, mutation probability of 0.05, Generation 400 and a population numbering 20 individuals. The study produced a combination of the best portfolios for the period of 24 months with a computing time of 63,289 seconds.
Perbandingan Metode Ekstraksi Ciri Histogram dan PCA untuk Mendeteksi Stoma pada Citra Penampang Daun Freycinetia Satria, Dony; Mushthofa, Mushthofa
Jurnal Ilmu Komputer dan Agri-Informatika Vol 2, No 1 (2013)
Publisher : Departemen Ilmu Komputer IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Ekstraksi fitur adalah proses pengambilan ciri sebuah objek yang dapat menggambarkan karakteristik dari objek tersebut. Pada penelitian ini, dua buah metode ekstraksi fitur digunakan, yaitu Principal Component Analysis (PCA) dan histogram untuk melakukan deteksi stoma pada gambar penampang daun Freycinetia. Penelitian ini menggunakan frame berjalan yang melakukan pengolahan bagian citra dan melakukan deteksi kemunculan stoma pada bagian citra tersebut. Untuk memodelkan kemunculan stoma, dibuat tiga kelas frame, yaitu frame dengan kemunculan stoma penuh, frame dengan kemunculan sebagian stoma, dan frame tanpa kemunculan stoma. Untuk proses klasifikasi, digunakan pemodelan menggunakan Jaringan Saraf Tiruan (JST) Backprogragation. Hasil percobaan menunjukkan bahwa ekstraksi fitur menggunakan PCA menghasilkan akurasi yang lebih baik dibandingkan dengan metode histogram. Nilai F1-measure yang terbaik yang didapatkan menggunakan ekstraksi fitur PCA ialah 0.9091.Kata kunci: deteksi stoma, ekstraksi fitur, Freycinetia, histogram, PCA