Eka Prakarsa Mandyartha
Unknown Affiliation

Published : 4 Documents
Articles

Found 4 Documents
Search

Identifikasi Sel Darah Merah Bertumpuk Menggunakan Pohon Keputusan Fuzzy Berbasis Gini Index Mandyartha, Eka Prakarsa; Kurniawan, Muchammad; Perdana, Rizal Setya
Jurnal Buana Informatika Vol 6, No 1 (2015): Jurnal Buana Informatika Volume 6 Nomor 1 Januari 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pendekatan teknik data mining diusulkan untuk identifikasi sel darahmerah bertumpuk pada citra makroskopik sel darah untuk meningkatkan akurasipenghitungan jumlah sel darah merah. Fitur yang digunakan adalah geometri danwarna. Fitur geometri terdiri dari luasan dan eksentrisitas sel. Pada prosesidentifikasi digunakan pendekatan fuzzy. Setiap fitur direpresentasikan denganfungsi keanggotaan fuzzy. Identifikasi dilakukan berdasarkan aturan yangdiperoleh dari pohon keputusan fuzzy yang dibangkitkan. Pencabangan multisplitdigunakan pada pohon keputusan fuzzy. Pengukuran split atribut menggunakannilai gini index. Hasil pengujian pada 10 citra makroskopik sel darah yangmengandung 532 sel darah merah menunjukkan bahwa metode yang diusulkanmemiliki rata-rata akurasi sebesar 96,14%. Dengan akurasi yang tinggidiharapkan dapat meningkatkan akurasi diagnosis penyakit berdasarkan jumlahsel darah merah.
Three-level Local Thresholding Berbasis Metode Otsu untuk Segmentasi Leukosit pada Citra Leukemia Limfoblastik Akut Mandyartha, Eka Prakarsa; Fatichah, Chastine
Jurnal Buana Informatika Vol 7, No 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i1.483

Abstract

Abstract. Segmentation of Acute Lymphoblastic Leukemia (ALL) images can be used to identify the presence of ALL disease. In this paper, three-level local thresholdings based on Otsu method is presented for leucocytes segmentation in ALL image. Firstly, a method based on Gram-Schmidt orthogonalization theory is applied to partition the input image into several sub-images. The proposed method extends Otsu’s bi-level thresholding to three-level thresholding method  to find two local threshold values that maximize between-class variance. Using the two local threshold values and three-level local thresholding technique then segmenting each of sub-images into three regions, e.g. nucleus, cytoplasm, and background. To evaluate the performance of the proposed method, 32 peripheral blood smear images are used. The performance of the proposed method is compared with manually segmented ground truth using Zijdenbos similarity index (ZSI), precision, and recall. An experimental evaluation demonstrates superior performance over three-level global thresholding for ALL image segmentation.Keywords: three-level local thresholding, acute lymphoblastic leukemia, three-level Otsu thresholding, gram-schmidt orthogonalization Abstrak. Segmentasi citra Limfoblastik Leukemia Akut (LLA) dapat digunakan untuk mengidentifikasi kehadiran penyakit LLA. Pada penelitian ini diusulkan metode three-level local thresholding berbasis metode Otsu untuk segmentasi leukosit pada citra LLA. Pertama-tama, metode berbasis teori ortogonalisasi Gram-Schmidt diaplikasikan untuk membagi citra LLA menjadi sub-sub citra. Metode yang diusulkan memperluas metode bi-level thresholding Otsu ke dalam kasus three-level thresholding untuk pencarian dua nilai ambang lokal tiap sub-citra yang memaksimumkan varian antar kelas. Dengan nilai ambang jamak lokal tersebut, teknik three-level local thresholding selanjutnya  mensegmentasi tiap sub-citra ke dalam tiga region, yaitu nukelus, sitoplasma, dan latar belakang. Untuk mengevaluasi performa metode usulan, 32 citra uji digunakan. Performa metode yang diusulkan dibandingkan dengan citra segmentasi manual menggunakan Zijdenbos similarity index (ZSI), presisi, dan recall. Hasil uji coba menunjukkan performa three-level local thresholding lebih unggul daripada metode three-level global thresholding untuk segmentasi citra LLA. Kata Kunci: three-level local thresholding, leukemia limfoblastik akut, three-level Otsu thresholding, ortogonalisasi gram-schmidt
Pembangkitan Data Uji Menggunakan Algoritma Genetika Multi-populasi Fuzzy Adaptif Mandyartha, Eka Prakarsa
INTEGER: Journal of Information Technology Vol 2, No 1 (2017): Maret 2017
Publisher : INTEGER: Journal of Information Technology

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract. Test Data Generation using Fuzzy Adaptive Multi-population Genetic Algorithm . Test data generation techniques based on genetic algorithm has been widely applied. As consequences, the time required in the software testing process can be reduced. The test data is used to detect software defects. This study proposes a genetic algorithm for generating test data to execute all the branches in a program. Control flow graph generated from the program to illustrate the flow of the program code, which contains branches. Branch target selected from sub-populations. Fuzzy adaptive is employed to obtain genetic parameters dynamically based on search conditions. Experimental results show that the proposed method when applied to a set of program which has many branches, better than the multi-population genetic algorithm that genetic parameters are static, in terms of the number of executions and the computation time. If test data can be obtained quickly, then the software defects can be found early.Keywords: multi-population genetic algorithm, adaptive fuzzy, software quality, data test generation, search-based testing Abstrak. Teknik pembangkitan data uji berbasis algoritma genetika telah diaplikasikan secara luas agar waktu yang diperlukan dalam proses pengujian perangkat lunak dapat dikurangi. Data uji digunakan untuk mendeteksi adanya cacat perangkat lunak. Pada penelitian ini diusulkan algoritma genetika sebagai pembangkit data uji untuk mengeksekusi semua cabang dalam sebuah program. Control flow graph dibangkitkan dari sebuah kode program untuk menggambarkan aliran kode program, yang berisi cabang-cabang. Cabang target dipilih dari sub-sub populasi. Fuzzy adaptif digunakan untuk memperoleh parameter genetika secara dinamis berdasarkan kondisi pencarian. Pendekatan algoritma genetika yang diusulkan ini ketika diterapkan pada kumpulan program dengan jumlah cabang yang sangat banyak, telah ditunjukkan secara eksperimental bahwa lebih baik, dalam hal jumlah eksekusi dan waktu komputasi, dibandingkan dengan algoritma genetika multi-populasi yang parameter genetikanya bersifat statis. Dengan data uji yang dapat diperoleh secara cepat maka cacat perangkat lunak dapat ditemukan lebih dini.Kata Kunci: algoritma genetika multi-populasi, fuzzy adaptif, kualitas perangkat lunak, pembangkitan data uji, pengujian berbasis pencarian
Deteksi Limfoblas pada Citra Sel Darah Menggunakan Fitur Geometri dan Local Binary Pattern Indrawanti, Annisaa Sri; Mandyartha, Eka Prakarsa
Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI) Vol 7, No 4 (2018)
Publisher : Jurusan Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1098.356 KB) | DOI: 10.22146/jnteti.v7i4.458

Abstract

Lymphoblasts are white blood cell types of lymphocytes, which can mark leukemia. To identify lymphoblasts, an analysis of white blood cells is required. In this study, a computer-based automated system was proposed using digital image processing techniques to detect lymphoblasts by analyzing microscopic images of blood cells. This proposed method segments the components of white blood cells, which are cytoplasm and nucleus, using a new approach based on adaptive local thresholding techniques. After each cell component was segmented, the geometry features and texture were extracted. The texture feature used a local binary pattern (LBP) descriptor from the nucleus. The set of features was used to train the support vector machine classification algorithm in detecting lymphoblasts. The proposed method is able to segment correctly 264 of 269 total white blood cells, with 98.14% accuracy, out of 35 acute lymphoblastic leukemia images taken with the same camera with the same lighting conditions. The use of geometry features with 16 dimensional feature vector and LBP features with 256 dimensional feature vector result in accuracy of lymphoblast identification of 88.79% and 89.72% respectively. Better performance is obtained by combining two features, the geometry and the LBP with 272 dimensional feature vector, with classification accuracy of 94.32%.