Yusro Nuri Fawzya
Balai Besar Riset Pengolahan Produk dan Bioteknologi Kelautan dan Perikanan

Published : 38 Documents
Articles

Found 38 Documents
Search

NOVEL MOLECULAR METHODS FOR DISCOVERY AND ENGINEERING OF BIOCATALYSTS FROM UNCULTURED MARINE MICROORGANISMS Uria, Agustinus Robert; Fawzya, Yusro Nuri; Chasanah, Ekowati
JOURNAL OF COASTAL DEVELOPMENT Vol 8, No 2 (2005): Volume 8, Number 2, Year 2005
Publisher : JOURNAL OF COASTAL DEVELOPMENT

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Metagenomics is a powerful cultivation-independent approach, which can be applied to gain access to the biocatalysts from uncultured marine microorganisms. Discovery of marine biocatalysts by this approach, in general, involves four main steps. First, a metagenomic library containing a pool of biocatalyst-encoding genes is constructed from a marine environment, which can be done by various methods, including cloning of enzymatically-digested DNA, uncut DNA, and PCR-amplified products. Second, the metagenomic library is screened for the genes of interest by employing the activity assay of expression product, in situ  hybridization, or Polymerase Chain Reaction (PCR). Third, the obtained target genes, both functional and phylogenetic genes, are sequenced and analysed by using bioinformatic tools in order to gain information on the functional and structural properties as well as the microbial sources of the encoded biocatalysts. Finally, the target genes are expressed in suitable microbial hosts, thereby producing the corresponding recombinant biocatalysts. All existing methods in engineering of marine biocatalysts for the performance improvement can be classified into two main strategies: (i) rational design and (ii) directed evolution. Rational design, which may include the use of resctriction enzyme(s) and splicing by overlap extension (SOE), requires information on the biocatalyst`s structural and functional properties to alter specific amino acid(s). Whereas directed evolution, including error-prone PCR technique and gene shuffling, needs no such information.
OPTIMIZATION OF Bacillus sp. K29-14 CHITINASE PRODUCTION USING MARINE CRUSTACEAN WASTE Uria, Agustinus Robert; Chasanah, Ekowati; Fawzya, Yusro Nuri
JOURNAL OF COASTAL DEVELOPMENT Vol 8, No 3 (2005): Volume 8, Number 3, Year 2005
Publisher : JOURNAL OF COASTAL DEVELOPMENT

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Chitin is present in large quantities in the marine crustacean waste disposed by seafood processing industries, making it very desirable as the substrate for producing chitinase, a hydrolytic enzyme of considerable interest in many industrial and agricultural applications. In our work, crustacean waste powder and its combination with colloidal chitin at different concentrations (0.5, 1.0, and 1.5%) were utilized to optimize the chitinase production by the bacterium, Bacillus sp. K29-14. The results showed that the chitinase production with the three different substrate concentrations was relatively constant in the range of 0.2 to 0.3 U/ml during 12 days cultivation, although there was a bit reduction after day 8. This activity profile seems to be similar to that of the protein content. Whereas the chitinase production on the media containing crustacean waste powder and its combination with colloidal chitin at the three concentrations showed that the highest activity (3.0 to 4.6 U/ml) was achieved on day 7 and 8. The specific chitinase activity with the waste powder at different concentrations of substrate (0.5, 1.0 and 1.5%) was increasing slowly during a nine-day cultivation. The optimal chitinase production (4.6 U/ml) was achieved with the combined substrate of 0.5% on day 8.
Fatty Acid Profile, Carotenoid Content, and In Vitro Anticancer Activity of Karimunjawa and Lampung Sea Cucumber Chasanah, Ekowati; Fawzya, Yusro Nuri; Tarman, Kustiariyah; Januar, Hedi Indra; Nursid, Muhammad
Squalen, Buletin Pascapanen dan Bioteknologi Kelautan dan Perikanan Vol 11, No 3 (2016): December 2016
Publisher : Research and Development Center for Marine and Fisheries Product Processing and Biotechnol

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15578/squalen.v11i3.269

Abstract

Fatty acids and carotenoid has been known as an anticancer agent on both preventing and treating cancer disease. This study was conducted to analyze the fatty acid profile, carotenoid and in vitro anticancer activity of 12 sea cucumber harvested from Karimunjawa and Lampung waters. The aim of the study was to determin the potency of sea cucumbers as raw material for nutraceutical products. Fatty acid profile and carotenoid content were characterized by gas chromatography and spectrophotometry techniques, while in vitro anticancer activity was assessed by MTT assay against cervix (HeLa), breast (T47D and MCF-7) and colon (WiDR) cancer cells. Results of the study showed polyunsaturated fatty acid (PUFA) dominated the composition of fatty acids in the samples from both locations. Holothuria sp. was detected to contain the highest amount of carotenoid. Furthermore, the highest in vitro anticancer activity was detected also in the sample of Holothuria sp. The activity of 30 ppm Holothuria sp. extract against HeLa cell was detected to be almost equal to the 5 ppm doxorubicin control. Concentration of 5 ppm Holothuria sp. extract also showed positive result in killing 50% of MCF-7 and T47D, but capable to 100% kill HeLa and WiDR cells. At concentration of 25 ppm, the extract was able to kill all the 4 cells tested. Statistical analysis showed the amount of carotenoid and two particular fatty acid compounds (docosadienoic and eicosapentaenoic acid) significantly (P<0.05) contributed to the cytotoxic activity that was found in the sea cucumber samples. Those compounds were found in highest concentration from Holothuria sp harvested from Lampung waters, thus being the most prospective raw material for nutraceutical or functional food ingredient with anticancer potency.
PURIFICATION AND CHARACTERIZATION OF THE NEWLY THERMOSTABLE PROTEASE PRODUCED BY Brevibacillus thermoruber LII ISOLATED FROM PADANG CERMIN HOTSPRING, INDONESIA Zilda, Dewi Zeswita; Harmayani, Eni; Widada, Jaka; Asmara, Widya; Irianto, Hari Eko; Patantis, Gintung; Fawzya, Yusro Nuri
Squalen, Buletin Pascapanen dan Bioteknologi Kelautan dan Perikanan Vol 9, No 1 (2014): May 2014
Publisher : Research and Development Center for Marine and Fisheries Product Processing and Biotechnol

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15578/squalen.v9i1.91

Abstract

Thermo stability is among of the vital enzyme characteristics for industrial application. Brevibacillus thermoruber LII was obtained as a potential isolate from the previous researchwhich screened the potential thermostable protease producing bacteria from Indonesian hotspring.The newly thermostable protease produced by thermophilic Brevibacillus thermoruber LII hadbeen purified and characterized. It was predicted that the pure enzyme obtained from Brevibacillusthermoruber LII was homo hexameric, having molecular weight of 36 kDa unit protein and itsnative was 215 kDa. In addition, it was also a neutral metalo serine protease according tobiochemical tests that it was totaly inhibited by PMSF (Phenylmethanesulfonyl fluoride) and EDTA(Ethylenediaminetetraacetic acid). It showed optimum activity at pH of 8 and active in acidic buffer(up to pH of 4). All of metal ion in the form of chloride salt (2.5 mM) which were tested on theenzyme enhanced the enzyme activity but Li2+. Ca2+ion increased the activity and the stability ofenzyme against thermal. The enzyme also showed the stability against solvent. The protease LIIhad optimum temperature at 60oC without CaCl 2and 80 – 85oC with addition of 2.5 mM CaCl 2. TheK Mand V maxvalues for the purified protease LII were 27.2 mg/ml or 0.362 – 0.272 M for substrateHammersteinCasein (MM 75–100 kDa) and 261.1 µg/minute/ml, respectively.
Bacterial Diversity of a Microbial Mat from Hot Spring at Wartawan Beach, Lampung and Its Potential as a Source of Hydrogenases Patantis, Gintung; Chasanah, Ekowati; Fawzya, Yusro Nuri; Qing, He Pe; Lei, Zhang Xue
Squalen, Buletin Pascapanen dan Bioteknologi Kelautan dan Perikanan Vol 13, No 1 (2018): May 2018
Publisher : Research and Development Center for Marine and Fisheries Product Processing and Biotechnol

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15578/squalen.v13i1.323

Abstract

Biohydrogen produced from thermophilic hydrogenases is an ideal and clean energy sources. As the biggest tectonic area in the world, Indonesia is potential for thermophile isolation. The aims of this study were to analyze the bacterial diversity of a microbial mat from hot spring at Wartawan beach, Lampung and to analyze the potency of microbial mat for hydrogenases, using clone library method. The diversity of 16S rRNA showed that the microbial mat sample contained 9 phyla of bacteria, and dominated by Cyanobacteria and Proteobacteria. These phyla indicate that the bacterial community of the microbial mat consisted of phototrophic and heterotrophic groups. In addition, a microbial mat of Wartawan beach environment might be influenced by marine environment and hydrothermal vent which was indicated by detection of both associated bacteria. The diversity of hydrogenase genes using NiFe hydrogenase (NiFe) and FeFe hydrogenase (FeFe) genes showed that Cyanobacteria was specifically related to NiFe, while Firmicutes was associated with FeFe. Proteobacteria and Bacteroidetes, however, were detected for both genes. The detected hydrogenase genes indicate that the microbial mat from hot spring at Wartawan beach is a promising source for hydrogenases isolation and further applications for biohydrogen production as a renewable energy. 
Chemical Pretreatment and Enzymatic Saccharification of Seaweed Solid Wastes Martosuyono, Pujoyuwono; Hakim, Andi; Fawzya, Yusro Nuri
Squalen, Buletin Pascapanen dan Bioteknologi Kelautan dan Perikanan Vol 10, No 2 (2015): August 2015
Publisher : Research and Development Center for Marine and Fisheries Product Processing and Biotechnol

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15578/squalen.v10i2.130

Abstract

The technical feasibility of seaweed waste utilization as a resource of renewable energy was investigated in this paper. The production of fermentable sugars from seaweed waste was studied by dilute sulfuric acid and sodium hydroxide pretreatment and further enzymatic hydrolysis. Pretreatment was conducted by using 1.0 and 2.0% dilute sulfuric acid w/v and 4 and 5% sodium hydroxide w/v for 30 min at 121 oC. Pretreated seaweed wastes were analyzed by X­Ray Diffraction (XRD) to examine the crystallinity index of the cellulose and observed using Scanning Electron Microscopy (SEM) to examine the changes in structure of cellulose fiber. Saccharification of pretreated seaweed waste was carried out using crude cellulase enzyme provided by Pulp and Paper Research Center in Bandung. Saccharification was done in shake flask with 20% of substrate in citrate phosphate buffer at 30 oC and 50 oC, agitation of 150 rpm in shaking incubator for 48 h. Samples were collected at 2, 6, 12, 24 and 48 h for further analysis. Enzyme concentrations were varied between 10­50 U/g dry samples. The results showed that dilute acid and base pretreatment of seaweed solid waste can be used to improve the digestibility of seaweed waste. It successfully acted by reducing the lignin content and degrading the structure of cellulose from crystalline into amorphous form which is more susceptible to the enzyme action.The optimum pretreatment condition was shown by 4% NaOH at 121 oC for 30 min, producing the most fermentable sugar concentration. Sugar concentration produced by saccharification was optimum at 50 oC, enzyme concentration of 50 U/g sample for 24 h base pretreatment. The results of the experiment were expected to contribute in the process development of bioconversion of lignocellulosic materials into renewable energy sources. 
Screening of Indonesian Streptomyces sp. Capable of Secreting Transglutaminase (Mtgase) and Optimization of Mtgase Production Using Different Growth Media Fawzya, Yusro Nuri; Zilda, Dewi Seswita; Chaniago, Seprianto; Prestisia, Hana Nurullita; Lisdiyanti, Puspita; Khasanah, Noer
Squalen, Buletin Pascapanen dan Bioteknologi Kelautan dan Perikanan Vol 11, No 1 (2016): May 2016
Publisher : Research and Development Center for Marine and Fisheries Product Processing and Biotechnol

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15578/squalen.v11i1.195

Abstract

Transglutaminase (TGase), an enzyme that catalyzes the formation of inter- and intra-molecular e-(l-glutamyl) lysine (GL) crosslinks, plays an important role in surimi-based products production. The development and the diversification of surimi-based products have recently been getting popular in Indonesia. These surimi-based products can be made from various types of fish. These products generally exhibit good gel strength properties,  depending on the fish type and the processing method used. Transglutaminase plays an important role in generating such properties. Fish’s endogenous TGase reduces quickly after it is caught and is almost completely destroyed by freezing it, applying exogenous TGase may improve fish’s gel forming ability. Microbial transglutaminase (MTGase) can potentially be used to increase gel properties. In this research, a total of 228 Streptomyces strains from marine and terrestrial environments were screened and selected based on their ability to produce MTGase. Strain TTA 02 SDS 14 exhibited the highest activity; and therefore, it was selected for further study. The 16S-rRNA gene analysis showed that it shared 99% similarity to S. thioluteus. In order to optimize MTGase activity, enzyme production was carried out using six different formulas media, designated as media A, B, C, D, E, and F. The result shows that the highest MTGase activity was observed in medium B that contains pepton (1.5%), MgSO4.7H20 (0.1%), KH2PO4 (0.5%), Na2HPO4 (0.5%), soybean powder (2%), potato starch (2%), and glucose (1.5%). The MTGase activity reached the highest level (1.45 U/ml) after 4 days of incubation
SCREENING OF THERMOSTABLE PROTEASE PRODUCING MICROORGANISMS ISOLATED FROM INDONESIAN HOTSPRING Zilda, Dewi Seswita; Harmayani, Eni; Widada, Jaka; Asmara, Widya; Irianto, Hari Eko; Patantis, Gintung; Fawzya, Yusro Nuri
Squalen, Buletin Pascapanen dan Bioteknologi Kelautan dan Perikanan Vol 7, No 3 (2012): December 2012
Publisher : Research and Development Center for Marine and Fisheries Product Processing and Biotechnol

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15578/squalen.v7i3.5

Abstract

Although many proteases had been studied and characterized, only a few of them are commercially available.  Protease thermostability is one of the crucial properties for industrialapplication. This research aimed to isolate and to screen the potential isolate which produce thermostable protease. There were 6 isolates (BII-1, BII-2, BII-3, BII-4, BII-6 and LII), isolated using solid Minimal Synthetic Medium (MSM) supplemented with 1.5% skim milk, that have, protease activity. Based on the 16S-rRNA gene sequencing analysis, isolates BII-1, BII-2 and BII- 6 were identified as Bacillus licheniformis, isolates BII-3 and BII-4 were identified as Bacillus subtilis, while isolate LII was identified as Brevibacillus thermoruber. Three isolates (BII-6, BII-4 and LII) were then further investigated for the second screening step using liquid MSM supplemented with 1% skim milk. The isolates (BII-6, BII-4 and LII) optimally produced protease when they were cultivated at 35, 30 and 50o C respectively after 22 h of incubation. Protease produced by BII-6, BII-4 and LII had optimum temperature  of 65, 60 and 85o C, optimum pH at 7-8, 8 and 9 and stable up to 100 min at 55, 60 and 75o C respectively.
TEKNIK IDENTIFIKASI MIKROORGANISME SECARA MOLEKULER Patantis, Gintung; Fawzya, Yusro Nuri
Squalen, Buletin Pascapanen dan Bioteknologi Kelautan dan Perikanan Vol 4, No 2 (2009): August 2009
Publisher : Research and Development Center for Marine and Fisheries Product Processing and Biotechnol

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15578/squalen.v4i2.146

Abstract

Akhir-akhir ini bioprospeksi mikroorganisme laut semakin populer dan banyak  diminati karena potensinya yang menjanjikan sebagai sumber komponen bioaktif baru. Identifikasi mikroorganisme merupakan salah satu tahapan yang penting dalam bioprospeksi. Perkembangan identifikasi mikroba diawali dengan identifikasi melalui ciri-ciri morfologi, fisiologi, dan metabolisme. Namun adanya kekurangan-kekurangan metode ini yaitu berupa ketidakakuratan dan waktu identifikasi yang lama menjadikan metode secara molekuler lebih berkembang. Pada bakteri, 16S ribosom deoxyribonucleic acid (rDNA) mempunyai daerah sekuen yang konservatif sehingga dapat digunakan untuk menduga hubungan kekerabatan secara alami  antar  spesies. Sedangkan pada kapang digunakan 18S rDNA dan daerah internal transcribed spacer (ITS) untuk identifikasinya. Tahapan identifikasi dengan metode molekuler meliputi ekstraksi deoxyribonucleic acid (DNA), amplifikasi DNA, sekuensing, analisis hasil sekuen, dan pembuatan pohon filogenetik. Balai Besar Riset Pengolahan Produk dan Bioteknologi Kelautan dan Perikanan (BBRP2B-KP) memiliki  koleksi mikroba potensial penghasil enzim kitosanase, kitinase, dan protease dari berbagai sampel dari lingkungan laut. Berdasarkan pohon filogenetik  beberapa isolat koleksi memiliki kemiripan 87–96% dengan Staphylococcus caprae, Stenotrophomonas maltophilia, Acinetobacter sp., Bacillus licheniformis, Geobacillus stearothermophilus.
Kitosan Oligosakarida: Produksi dan Potensinya sebagai Antibakteri Dewi, Ariyanti Suhita; Fawzya, Yusro Nuri
Squalen, Buletin Pascapanen dan Bioteknologi Kelautan dan Perikanan Vol 1, No 1 (2006): December 2006
Publisher : Research and Development Center for Marine and Fisheries Product Processing and Biotechnol

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15578/squalen.v1i1.75

Abstract

Kitosan