Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Chemistry

Synthesis, Characterization of Cellulose Modified with 2-Mercaptobenzothiazole and Its Adsorption To Cu(II) Ion in Aqueous Solution Fatoni, Ahmad; Koesnarpadi, Soerja; Hidayati, Nurlisa
Indonesian Journal of Chemistry Vol 15, No 2 (2015)
Publisher : Universitas Gadjah Mada

Show Abstract | Original Source | Check in Google Scholar | Full PDF (338.644 KB)

Abstract

The modification of cellulose with 2-mercaptobenzhotiazole (MBT) through grafting and impregnating methods has been done. Modified cellulose used as adsorbent for Cu(II) ion in aqueous solution. The aims of research were modification cellulose with 3-chloropropyltrimethoxysilane and 2-mercaptobenzhotiazole (MBT), characterization of the modified cellulose with FTIR, SEM and XRD and adsorption study between cellulose-MBT adsorbent with Cu(II) ion in aqueous solution. The adsorbent of cellulose-MBT was synthesized by reflux process. Adsorption study between cellulose-MBT adsorbent with Cu(II) ion was investigated based on influence of pH solution, interaction time and initial concentration of Cu(II) ion. The result showed that activated cellulose can be modified with MBT to become cellulose-MBT adsorbent. The functional group of –C=N appeared at wavenumber 1658 cm-1 attributed to functional group of -C=N- is Schiff base of MBT. Presence functional group of S-H at cellulose-MBT adsorbent was not detected. The surface morphology of cellulose-MBT adsorbent after being interacted with Cu(II) ion was different before being interacted with Cu(II) ion. The diffractogram of cellulose-MBT adsorbent has similarity with cellulose-MBT adsorbent-Cu(II) ion. The optimum adsorption of Cu(II) ion was observed at pH 7.0 and 150 min of interaction time. Percentage of Cu(II) ion was absorbed by cellulose-MBT adsorbent tended to be constant after Cu(II) ion concentration 100 ppm.
Synthesis and Characterization of Chitosan Linked by Methylene Bridge and Schiff Base of 4,4-Diaminodiphenyl Ether-Vanillin Fatoni, Ahmad; Hariani, Poedji Loekitowati; Hermansyah, Hermansyah; Lesbani, Aldes
Indonesian Journal of Chemistry Vol 18, No 1 (2018)
Publisher : Universitas Gadjah Mada

Show Abstract | Original Source | Check in Google Scholar | Full PDF (466.923 KB)

Abstract

The synthesis chitosan-methylene bridge-Schiff base of 4,4-diaminodiphenyl ether-vanillin using casting method has been done. The aims of this research were modification chitosan with Schiff base of 4,4-diaminodiphenyl ether-vanillin, formaldehyde and its characterization using FTIR spectroscopy, SEM analysis, 1H-NMR and X-Ray Diffraction analysis. The first step was a synthesis of modified chitosan between chitosan and Schiff base of 4,4-diaminodiphenyl ether-vanillin. The second step was chitosan modified Schiff base of 4,4-diaminodiphenyl ether-vanillin then reacted with formaldehyde through casting method. The result showed that chitosan can be modified with Schiff base of 4,4-diaminodiphenyl ether-vanillin and formaldehyde and this modified chitosan can be linked by methylene bridge (-NH-CH2-NH-) and had azomethine group (-C=N-). The functional group of –C=N in modified chitosan before and after adding formaldehyde appeared at a constant wavenumber of 1597 cm-1. The functional group C-N in methylene bridge detected at 1388 and 1496 cm-1. The chitosan-Schiff base of 4,4-diaminodiphenyl ether-vanillin and Chitosan-methylene bridge-Schiff base of 4,4-diaminodiphenyl ether-vanillin had index crystalline (%)16.04 and 25.76, respectively. The chemical sift of signal proton azomethine group (-C=N-) in modified chitosan detected at 8.44–8.48 and 9.77 ppm. Proton from methylene bridge in modified chitosan appeared at 4.97–4.99 and 3.75 ppm. Surface morphology chitosan-methylene bridge-Schiff base of 4,4-diaminodiphenylether-vanillin had dense surfaces, mostly uniform and regular in shape.