Articles

Found 5 Documents
Search

Optimization of an Intelligent Controller for an Unmanned Underwater Vehicle Faruq, Amrul; Bin Abdullah, Shahrum Shah; Nor Shah, M. Fauzi
TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol 9, No 2: August 2011
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (150.858 KB)

Abstract

Underwater environment poses a difficult challenge for autonomous underwater navigation. A standard problem of underwater vehicles is to maintain it position at a certain depth in order to perform desired operations. An effective controller is required for this purpose and hence the design of a depth controller for an unmanned underwater vehicle is described in this paper. The control algorithm is simulated by using the marine guidance navigation and control simulator. The project shows a radial basis function metamodel can be used to tune the scaling factors of a fuzzy logic controller. By using offline optimization approach, a comparison between genetic algorithm and metamodeling has been done to minimize the integral square error between the set point and the measured depth of the underwater vehicle. The results showed that it is possible to obtain a reasonably good error using metamodeling approach in much a shorter time compared to the genetic algorithm approach.
Multi-objective Optimization of PID Controller using Pareto-based Surrogate Modeling Algorithm for MIMO Evaporator System Faruq, Amrul; Nor Shah, Mohd Fauzi; Abdullah, Shahrum Shah
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 1: February 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v8i1.pp556-565

Abstract

Most control engineering problems are characterized by several objectives, which have to be satisfied simultaneously. Two widely used methods for finding the optimal solution to such problems are aggregating to a single criterion, and using Pareto-optimal solutions. This paper proposed a Pareto-based Surrogate Modeling Algorithm (PSMA) approach using a combination of Surrogate Modeling (SM) optimization and Pareto-optimal solution to find a fixed-gain, discrete-time Proportional Integral Derivative (PID) controller for a Multi Input Multi Output (MIMO) Forced Circulation Evaporator (FCE) process plant. Experimental results show that a multi-objective, PSMA search was able to give a good approximation to the optimum controller parameters in this case. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) method was also used to optimize the controller parameters and as comparison with PSMA.
PLC Human Machine-Interfaces Based System for Vietnam Drip Coffee Maker Application Mardiyah, Nur Alif; Sudrajat, Akhmad Hakam; Faruq, Amrul
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol 3, No 1, February-2018
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1436.908 KB) | DOI: 10.22219/kinetik.v3i1.272

Abstract

The most recent development of digital technology is rapidly growing having a strong impact in daily activities. Automation is a trend in society to make those activities become easier. Moreover, efficiency has played the main role in the automation concept. For example, when making a drink which requires to accurately mix all required ingredients, like sugar, tea, and also coffee, the process may take time. Meanwhile, other more important processes have waited to be carried out. The idea of fasten up these activities may be preferable, exemplified by making an automatic drink maker machine. Moreover, coffee has been popular drink fancied by most people on the society. Hence, due to the high load of the people’s activity, everything is required to be instant and efficient. According to this trend, to provide an efficient, easy, and good management, we need to create an automatic, fast, and accurate system control which can be implemented by using Programmable Logic Controller (PLC) and Human-Machine Interface (HMI). Meanwhile, in this research, Omron PLC and HMI are utilized to build an automatic drink maker device of Vietnamese Drip Coffee designed to resolve the society’s needs of coffee with higher efficiency of serving process. The automatic coffee maker device of Vietnamese Drip Coffee based on PLC and HMI is a device designed to simplify the making process of Vietnamese Drip Coffee in hot condition. This device can be operated by only touching/tapping on its coffee menu choices. The design of this device has the main purpose to operate and test the control system based on PLC and HMI to control and monitoring the automatic process of producing Vietnamese Drip Coffee started from choosing the coffee types until mixing process.
Application Monitoring Design of Water Tank Volume and Clarity System using LabView NI MYRIO Nurdiansyah, Erwin; Hasani, Chasrun; Faruq, Amrul
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol 2, No 4, November-2017
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (159.187 KB) | DOI: 10.22219/kinetik.v2i4.206

Abstract

A traditional controlling and measuring system both in home industry and factory have many constraints especially in the field of quality and efficiency. Operators have to control and monitor while the tank is in the water filling mode. Consequently, an effective system is needed to increase the ease in industry operation. In this work, an application design of water volume in tank and clarity system has presented using RF04 ultrasonic sensor to detect water level; furthermore, a turbidity sensor was also employed to detect water clarity. Both of them were controlled by National Instrument (NI) myRIO-1900. NI myRIO was used in this work as a controller having automatic on/off relay module employed to the water tank and integrated with a personal computer as human machine interface system (HMI). NI LabView software used as HMI in this work was also connected to Wi-Fi module to establish a remote monitoring role. As a result, the simulation shows that water level can be measured utilizing ultrasonic sensor as well as turbidity sensor detection for water clarity.
The use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level Faruq, Amrul; Abdullah, Shahrum Shah; Marto, Aminaton; Abu Bakar, Mohd Anuar; Mohd Hussein, Shamsul Faisal; Che Razali, Che Munira
International Journal of Advances in Intelligent Informatics Vol 5, No 1 (2019): March 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1996.746 KB) | DOI: 10.26555/ijain.v5i1.280

Abstract

Many different Artificial Neural Networks (ANN) models of flood have been developed for forecast updating. However, the model performance, and error prediction in which forecast outputs are adjusted directly based on models calibrated to the time series of differences between observed and forecast values, are very interesting and challenging task. This paper presents an improved lead time flood forecasting using Non-linear Auto Regressive Exogenous Neural Network (NARXNN), which shows better performance in term of forecast precision and produces minimum error compared to neural network method using Radial Basis Function (RBF) in examined 12-hour ahead of time. First, RBF forecasting model was employed to predict the flood water level of Kelantan River at Kuala Krai, Kelantan, Malaysia. The model is tested for 1-hour and 7-hour ahead of time water level at flood location. The same analysis has also been taken by NARXNN method. Then, a non-linear neural network model with exogenous input promoted with enhancing a forecast lead time to 12-hour. Both about the performance comparison has briefly been analyzed. The result verified the precision of error prediction of the presented flood forecasting model.