Bilalodin Bilalodin
Program Studi Fisika Jurusan MIPA Fakultas Sains dan Teknik Unsoed Jl. Dr. Soeparno No. 61 Kampus Unsoed Karangwangkal Telp/Fax (0281) 638793

Published : 5 Documents
Articles

Found 5 Documents
Search

Optimasi Prototipe Turbin Angin Menggunakan Metode Conjugate Gradient Bilalodin, Bilalodin; Sugito, Sugito
BERKALA FISIKA Vol 13, No 2 (2010): Berkala Fisika, Edisi Khusus
Publisher : BERKALA FISIKA

Show Abstract | Original Source | Check in Google Scholar | Full PDF (366.573 KB)

Abstract

One of the principal issue of energy conversion from wind energy to electrical energy is the optimization of its conversion process. Energy conversion is called optimum if the power lost is  minimum. The condition can be attained at the development stage of a wind turbine prototype.  This research will determine the optimum value the  variables of  various operation condition by using  multivariables Conjugate Gradient (CG) optimization algorithm. It is found that the optimum value is attained at  H = 1,0 m and D = 0,6 m, hence minimum power lost. The performance of turbine prototype design at laboratory, showed that the turbine can testing at low and high wind speed and   the irrespective of wind direction condition.    Keywords :  optimalization, prototype, wind turbin, conjugate gradient  
Design Collimator and Dosimetry of in Vitro and in Vivo Test Using MCNP-X Code Yuniarti, Sri; Sardjono, Yohannes; Bilalodin, Bilalodin
Indonesian Journal of Physics and Nuclear Applications Vol 1 No 1 (2016)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Original Source | Check in Google Scholar | Full PDF (601.551 KB)

Abstract

Studies were carried out to collimator modelling and dosimetry BNCT of in vitro and in vivo test using MCNP-X code. Collimator modelling performed to obtain neutron beam as required by the International Atomic Energy Agency (IAEA). Dosimetry calculations performed to obtain the results of the dose calculation (dosimetry) in the application of BNCT.  Collimator modelling and dosimetry simulations performed with MCNPX program. Neutron sources used for simulation, namely cyclotrons HM-30, energy 30 MeV, the current is 1.1 mA. Collimator modelling utilizes to program MCNPX covers cells target as beryllium, collimator wall (reflector), moderate, filter, gamma-ray shielding, and aperture. The simulation results of the modelling are Φepi 1.02241x1010 n/cm2 s, Df/Φepi 2.36487x10-11 Gy-cm2/n, Dγ/Φepi 4.68416x10-12 Gy-cm2/n, Φth/Φepi 3.76285x10-01, J/Φepi 8.37678x103. Based on the calculation of the dose rate that has been done, the result that the optimal dose rate at a depth of 1cm.
Double Layer Collimator for BNCT Neutron Source Based on 30 MeV Cyclotron Bilalodin, Bilalodin; Kusminarto, Kusminarto; Hermanto, Arief; Sardjono, Yohannes; Sunardi, Sunardi
Indonesian Journal of Physics and Nuclear Applications Vol 2 No 3 (2017)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Original Source | Check in Google Scholar | Full PDF (474.247 KB)

Abstract

A research of design of double layer collimator using 9Be(p,n) neutron source has been conducted. The research objective is to design a double layer collimator to obtain neutron sources that are compliant with the IAEA standards. The approach to the design of double layer collimator used the MCNPX code. From the research, it was found that the optimum dimensions of a beryllium target are 0.01 mm in length and 9.5 cm in radius. Collimator consists of a D2O and Al moderator, Pb and Ni as a reflector, and Cd and Fe as a thermal and fast neutron filter. The gamma filter used Bi and Pb. The quality neutron beams emitted from the double layer collimator is specified by five parameters: epithermal neutron flux 1 ×109 n/cm2s; fast neutron dose per epithermal neutron flux 5 ×1013 Gy cm2s; gamma dose per epithermal neutron flux 1×1013 Gy cm2s; ratio of the thermal neutron flux of epithermal neutron flux 0; and the ratio of epithermal neutron current to total epithermal neutron 0.54.
FG-FET Berbasis Film Ag2O Untuk Pendeteksian H2S Widanarto, W; Bilalodin, Bilalodin; Saputro, R. A.
Jurnal Otomasi Kontrol dan Instrumentasi Vol 3, No 2 (2011): Jurnal Otomasi Kontrol dan Instrumentasi
Publisher : Masyarakat Otomasi Kontrol dan Instrumentasi

Show Abstract | Original Source | Check in Google Scholar | Full PDF (508.646 KB)

Abstract

Film Ag2O telah ditumbuhkan pada top electrode Si/Ti/Pt dengan evaporasi termal. Proses evaporasi dilakukan pada tekanan 2×10-2 mbar dalam atmosfir oksigen sintetis. SEM digunakan untuk menganalisa struktur permukaan film. Top electrode dilekatkan pada chip FG-FET untuk membentuk sebuah sensor gas yang sensitif terhadap H2S. Karakterisasi yang meliputi uji temperatur, konsentrasi, kelembaban dan selektivitas dilakukan untuk mengetahui kehandalan sensor. Hasil karakterisasi menunjukkan bahwa FG-FET berbasis film Ag2O dapat mendeteksi H2S pada konsentrasi rendah dengan temperatur operasi optimum 95°C dalam keadaan kering maupun lembab. Penambahan klaster Fe pada permukaan film Ag2O dapat meningkatkan unjuk kerja sensor yang ditandai dengan peningkatan sinyal keluaran sensor. Keywords:FG-FET, Film Ag2O, Fe,Fungsi Kerja, H2S
Characteristics in Water Phantom of Epithermal Neutron Beam Produced by Double Layer Beam Shaping Assembly Bilalodin, Bilalodin; Suparta, Gede Bayu; Hermanto, Arief; Palupi, Dwi Satya; Sardjono, Yohannes
ASEAN Journal on Science and Technology for Development Vol 36 No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Original Source | Check in Google Scholar

Abstract

A Double Layer Beam Shaping Assembly (DLBSA) was designed to produce epithermal neutrons for BNCT purposes. The Monte Carlo N-Particle eXtended program was used as the software to design the DLBSA and phantom. Distribution of epithermal neutron and gamma flux in the DLBSA and phantom and absorbed dose in the phantom were computed using the Particle and Heavy Ion Transport code System program. Testing results of epithermal neutron beam irradiation of the water phantom showed that epithermal neutrons were thermalized and penetrated the phantom up to a depth of 12 cm. The maximum value of the absorbed dose was 2 × 10-3 Gy at a depth of 2 cm in the phantom.