Rita Arbianti
arbianti@che.ui.edu

Published : 8 Documents
Articles

Found 8 Documents
Search

EVALUASI PRODUKSI LISTRIK SUMBER ENERGI TERBARUKAN SEL ELEKTROKIMIA BERBASIS MIKROBA PADA VOLUME REAKTOR YANG BERBEDA Utami, Tania Surya; Arbianti, Rita; Mulyana, Guruh Mehra
Prosiding Semnastek PROSIDING SEMNASTEK 2017
Publisher : Universitas Muhammadiyah Jakarta

Show Abstract | Original Source | Check in Google Scholar | Full PDF (485.922 KB)

Abstract

Microbial Fuel Cell (MFC) merupakan salah satu teknologi yang dikembangkan untuk mendapatkan sumber energi terbarukan. MFC berupa sel elektrokimia yang menghasilkan listrik akibat aktivitas mikroba yang mendegradasi senyawa organik. Untuk menentukan apakah MFC dapat diaplikasikan menjadi teknologi praktis, dilakukan evaluasi melalui parameter kinetika berbasis Monod dan efisiensi coulomb serta efisiensi energi. Penelitian ini menggunakan reaktor tubular single chamber membranless dengan volume 0,5 L dan 5 L. Fokus penelitian ini adalah untuk mengevaluasi pengaruh peningkatan volume reaktor terhadap parameter kinetika dan efisiensi sistem. Data hasil percobaan di laboratorium berhasil dimodelkan dengan persamaan Monod. Nilai parameter kinetika untuk sistem MFC dengan volume 0,5 L adalah Pmax 0,032 mW/m2 dan Ks 772,98 mg/L, sedangkan untuk reaktor 5 L nilai Pmax sebesar 1,59 mW/m2 dan Ks 399,97 mg/L. Nilai efisiensi coulomb tertinggi untuk reaktor 0,5 L adalah sebesar 0,435% dan 2,84% untuk reaktor 5 L. Nilai efisiensi energi tertinggi pada sistem MFC adalah 0,015% dengan reaktor 5 L. Hasil penelitian menunjukkan peningkatan nilai parameter kinetika dan nilai efisiensi pada peningkatan volume reaktor dari 0,5 L ke 5 L. Peningkatan yang terjadi cukup signifikan, pada parameter Pmax terjadi peningkatan hingga 50 kali lipat.
Performance Optimization of Microbial Fuel Cell (MFC) Using Lactobacillus bulgaricus Arbianti, Rita; Utami, Tania; Hermansyah, Heri; Novitasari, Deni; Kristin, Ester; Trisnawati, Ira
Makara Journal of Technology Vol 17, No 1 (2013)
Publisher : Directorate of Research and Community Services, Universitas Indonesia

Show Abstract | Original Source | Check in Google Scholar | Full PDF (195.868 KB)

Abstract

Electrical energy needs in Indonesia are expected to continue to rise. The use of petroleum as a source of energy still dominates, although oil reserves in Indonesia are increasingly being depleted. Therefore, there is a need to develop alternative sources of sustainable energy, such as microbial fuel cell (MFC). In this study, Lactobacillus bulgaricus was used as an electricity producer in a dual-chamber MFC reactor. We investigated the maximum electrical energy by varying the bacterial optical density (OD), the operational time of MFC, the reactor volume, the electrolyte solution, and the configuration of MFC reactor. In this study, the maximum electrical energy (201.8 mW/m2) was generated at an OD of 0.5 in an MFC reactor series using potassium permanganate as the electrolyte solution.
Simultaneous Treatment of Organic (Phenol) and Heavy Metal (Cr6+ or Pt4+) Wastes over TiO2, ZnO-TiO2 and CdS-TiO2 Photocatalysts Slamet, Slamet; Arbianti, Rita; Daryanto, Daryanto
Makara Journal of Technology Vol 9, No 2 (2005)
Publisher : Directorate of Research and Community Services, Universitas Indonesia

Show Abstract | Original Source | Check in Google Scholar | Full PDF (102.437 KB)

Abstract

Treatment of heavy metal (Cr6+ and Pt4+) and organic (phenol) wastes has been studied using the relatively new method, i.e. simultaneous photocatalytic process over TiO2 photocatalysts in the batch photoreactor. Following the photocatalytic reduction of the heavy metal wastes, recovery of Cr and Pt was carried out by precipitation and leaching method, respectively.  The experimental results show that in the simultaneous photocatalytic system, there is a synergism effect between the photocatalytic reduction of heavy metal waste (Cr6+ or Pt4+) and the oxidation of organic waste (phenol), so that increasing the conversion of each other. Dopant of ZnO with the optimum loading (0.5 wt%) could slightly increase the performance of TiO2 photocatalyst in photocatalytic treatment of the wastes. Whereas CdS dopant with the optimum loading of 1 wt% could significantly enhance the  performance of TiO2 photocatalyst in simultaneous Cr(VI) reduction and phenol oxidation with the highest conversion of ≥ 97 % and 93 %, respectively. Photocatalytic reduction of Pt(IV) under 0.5%ZnO-TiO2 and 1%CdS-TiO2 photocatalysts effectively occurred with a high conversion (> 99 %) in 2 hours irradiation of UV. The optimum precipitation condition of Cr(III) recovery was achieved at pH = 9, with the efficiency of recovery was 91 %. Optimum temperature of leaching process in Pt recovery was 100 oC, with the efficiency of recovery was 86 %.
Improvement of Quality of Carica papaya L. with Clove Oil as Preservative in Edible Coating Technology Kusrini, Eny; Usman, Anwar; Wisakanti, Chrispine Deksita; Arbianti, Rita; Nasution, Dedy Alharis
Makara Journal of Technology Vol 19, No 3 (2015)
Publisher : Directorate of Research and Community Services, Universitas Indonesia

Show Abstract | Original Source | Check in Google Scholar | Full PDF (134.64 KB)

Abstract

We have studied utilization of essential clove oil, extracted from clove buds by hydrodistillation, as preservative in edible packaging technology. Preservative of essential clove oil was applied on chopped papaya fruits by using two methods, namely spray and brush. The effects of concentration of clove oil from 0.05 to 0.20% on the preservation of papaya fruits (Carica papaya L.) at room temperature (25 °C) were also evaluated. Physicochemical and in vitro microbiological activities on the papaya fruits that were stored at 25 oC and 85-90% relative humidity were investigated in details. The results indicate that the clove oil at concentration ≥0.10% suppressed the decay time, 10% weight loss, 0.03 g citric acid/100 g in acidity titration test, and 20% pH value from those of control sample of papaya fruits kept in a storage. The population of fungi and bacteria were efficiently reduced by 90% when the clove oil at concentration ≥0.10% was applied as preservative on papaya fruits. This finding suggested that the extracted essential clove oil acted as effective antifungal and antibacterial agents. Preservative by essential clove oil improved the quality of fruits to extend the product shelf life and to reduce the risk of microbial growth on fruits surface.
Cetane Number Booster Additive for Diesel Fuel Synthesized from Coconut Oil Nasikin, Mohammad; Arbianti, Rita; Azis, Abdul
Makara Journal of Technology Vol 6, No 2 (2002)
Publisher : Directorate of Research and Community Services, Universitas Indonesia

Show Abstract | Original Source | Check in Google Scholar | Full PDF (196.424 KB)

Abstract

To reduce NOx, SOx, HC, and particulates that produce because of using diesel fuel, can be done by increasing cetane number. One of methods is adding an additive to diesel fuel. 2-Ethyl Hexyl Nitrate (2-EHN) is a commercial additive that an organic nitrate. Making an additive in this research is used palm oil by nitration reaction that used HNO3 and H2SO4. Result of this reaction is methyl ester nitrate that has a structure looks like 2-EHN. IR spectra from research show that methyl ester nitrate is indicated by spectrum NO2 at 1635 cm-1. This result show that methyl ester nitrate can be synthesized by nitration reaction and yield is 74,84% volume. Loading 1% methyl ester nitrate to diesel fuel can increase cetane number from 44,68 to 47,49.
Kinetic Model For Triglyceride Hydrolysis Using Lipase:Review Hermansyah, Heri; Wijanarko, Anondho; Dianursanti, Dianursanti; Gozan, Misri; Wulan, Praswasti P. D.K; Arbianti, Rita; Soemantojo, Roekmijati W.; Utami, Tania Surya; Yuliusman, Yuliusman; Kubo, Momoji; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshiy
Makara Journal of Technology Vol 11, No 1 (2007)
Publisher : Directorate of Research and Community Services, Universitas Indonesia

Show Abstract | Original Source | Check in Google Scholar | Full PDF (128.756 KB)

Abstract

Triglyceride hydrolysis using lipase has been proposed as a novel method to produce raw materials in food and cosmetic industries such as diacylglycerol, monoacylglycerol, glycerol and fatty acid. In order to design a reactor for utilizing this reaction on industrial scale, constructing a kinetic model is important. Since the substrates are oil and water, the hydrolysis takes place at oil-water interface. Furthermore, the triglyceride has three ester bonds, so that the hydrolysis stepwise proceeds. Thus, the reaction mechanism is very complicated. The difference between the interfacial and bulk concentrations of the enzyme, substrates and products, and the interfacial enzymatic reaction mechanism should be considered in the model.
Isolation of Methyl Laurate from Coconut Oil as Raw Material for Fatty Alcohol Sulfate Arbianti, Rita; Utami, Tania Surya; Nugroho, Astri
Makara Journal of Technology Vol 12, No 2 (2008)
Publisher : Directorate of Research and Community Services, Universitas Indonesia

Show Abstract | Original Source | Check in Google Scholar | Full PDF (47.122 KB)

Abstract

Methyl laurate is a raw or base material for many industries, including surfactant industries. In this research, coconut oil (VCO) is transesterified with methanol to produce methyl ester, using NaOH as the catalyst. Methyl laurate is then separated by method based on the difference in melting point. This research focuses at determining the effects of some variables in transesterification on the concentration of produced methyl laurate. The variables are temperature (40 oC, 50 oC, 60 oC, 80 oC), time of transesterification reaction (0,5 hour, 1 hour, 1,5 hours, 2 hours, 3 hours), and the percent weight of the catalyst NaOH (0,5 %, 1 %, 1,5 %, 2 %, 3 %). Research showed the concentration of methyl laurate increased, following the increased temperature, time, and percent weight of catalysts. Optimal conditions were acquired at reaction temperature of 60oC, reaction time of 2 hours, and percent weight of the catalyst NaOH of 2 %. Laurate acid conversionto methyl laurate that yielded from optimal conditions, after the separation based on melting point, was 55,61 %.
The effects of biofilm and selective mixed culture on the electricity outputs and wastewater quality of tempe liquid waste based microbial fuel cell Surya Utami, Tania; Arbianti, Rita; Mariana, M; Dwi Karina, Nathania; Leondo, Vifki
Reaktor Volume 18 No. 2 June 2018
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Original Source | Check in Google Scholar

Abstract

Microbial Fuel Cell (MFC) technology is highly prospective to be developed because it could be utilized as the alternative electricity sources and simultaneously as the wastewater treatment unit using microorganism as catalyst. Industrial Tempe wastewater has the potential to be used as MFC substrate since it still contains high nutrition for microbe and could pollute the environment if it disposed before being processed first. This study focused on investigating the effect of selective mixed culture addition and biofilm formation on the electricity production and the wastewater treatment aspects with tubular single chamber membranless reactor and industrial Tempe wastewater substrate. The result showed that, with the addition of selective mixed culture, the optimum electricity production obtained with addition of 1 ml gram-negative bacteria with increase in electricity production up to 92.14% and average voltage of 17.91 mV, while the optimum decreased levels of COD and BOD obtained with addition of 5 ml gram-negative bacteria which are 29.32% and 51.32%. On the biofilm formation experiment, optimum electricity production obtained from biofilm formation time for 14 days with increase in electricity production up to 10-folds and average voltage of 30.52 mV, while the optimum decreased levels of COD and BOD obtained from biofilm formation time for 7 days which are 18.2% and 35.9%.Keywords : biofilm, Microbial Fuel Cell, selective mixed culture, Tempe wastewater, tubular reactor