Articles

Found 2 Documents
Search
Journal : Seminar Nasional Teknik Kimia Kejuangan

Studi Awal Pembuatan Koloid Kromik Fosfat Bertanda Radioisotop 32P Sebagai Bahan Pembuatan Skin Patch Rahman, Wira Y.; Sarmini, Endang; Herlina, Herlina; Hambali, Hambali; Abidin, Abidin; Triyanto, Triyanto; Sriyono, Sriyono; Widyaningrum, Triani
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2019: PROSIDING SNTKK 2019
Publisher : Prosiding Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Original Source | Check in Google Scholar | Full PDF (227.568 KB)

Abstract

Keloids are skin disorders or benign tumors that are due to abnormal wound healing in the binding tissue after a trauma, inflammation, surgical wounds, or burns. Low activity radioisotopes have shown to be effective in curing or eliminating keloids on the skin. One of these radioisotopes is phosphorus-32 (32P), a beta (β-) emitter with a half-life of 14.3 days. This radioisotope can also be developed for the treatment of keloid and skin tumors. Currently, keloid is treated by a conventional method e.g. by applying the bulk of 32P radioisotope directly on keloid area and this method is considered inefficient and less secure. The purpose of this research is to obtain technology for preparing of a 32P-labeled skin patch. The first step of this research is to produce 32P-labeled chromic phosphate (Cr32PO4) colloids, through condensation involving oxidation-reduction reaction. In this step, Cr (VI) is reduced to Cr (III) to form Cr32PO4 with a particle size of <1 μm.  These particles (Cr32PO4) are to expect to distribute evenly when mixed with silicon to form skin patch which will not decompose easily.  Characterization of the prepared Cr32PO4 colloids gave a yield of 97,8%. Geometric standard deviation (sg) of colloidal particles amounted to 163.7 nm shaped poly-disperse.  Further study needs to be performed in due time in order to have Cr32PO4 colloids with suitable particle size.
Production Evaluation of Radioiodine-131 from Neutron Activated of Natural Tellurium Dioxide Target in PTRR-BATAN Sriyono, Sriyono; Pujianto, Anung; Sarwono, D. Agung; Hambali, Hambali; Abidin, Abidin
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2019: PROSIDING SNTKK 2019
Publisher : Prosiding Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Original Source | Check in Google Scholar | Full PDF (455.444 KB)

Abstract

Radioiodine-131(I-131, 131I) is the other name of the radioisotope iodine-131 (131I),emits both gamma at energy 364 keV (81,7%) and beta with a maximum energy of 610 keV (89,9%) with half-life (T½) of 8.02 days. I-131 has been used in nuclear medicine for diagnosis of kidney function, thyroid damage, and for treatment of thyroid cancer, endocrine gland cancer, and neuroblastoma. Since 2013, PTRR-BATAN has been producing131I routinely from neutron activated of natural TeO2 targets. The radioactivity of I-131 that has been able to be produced ranged between 499and 1,095 mCi for 5.0 gr of natural TeO2 targets and irradiation of 96 hours. In general, 131I yield is influenced by the number of atoms target, neutron flux, cross section, and duration of irradiation time. In this report, production yields were evaluated according to position of TeO2 target inside an irradiation capsule. Based on several observations, target which position in the center of the irradiation capsule obtained to give the highest yield, an average of 66% from the theoretical calculation. On the other hand, target which position at bottom of the irradiation capsule was found to give a lower yield, an average of 44%. Position of the target material in the irradiation capsule was found not affecting the quality of 131I products. It still conforms to the requirements of radionuclide used in the field of nuclear medicine. I-131 produced in this project have been used for preparing Hippuran-131I, MIBG-131I, Oral-Na131I and 131I-capsules which then used for diagnosis and therapy at several hospitals in Jakarta, Bandung and Semarang.