Alfernando, Oki
IJFAC (Indonesian Journal of Fundamental and Applied Chemistry)

Published : 2 Documents
Articles

Found 2 Documents
Search

Synthesis and Characterization of ZSM-5 Catalyst for Catalytic Pyrolysis of Empty Fruit Bunches Rahmiyati, Lutfia; Arita, Susila; Komariah, Leily Nurul; Nazarudin, Nazarudin; Alfernando, Oki
IJFAC (Indonesian Journal of Fundamental and Applied Chemistry) Vol 4, No 2 (2019): June 2019
Publisher : IJFAC (Indonesian Journal of Fundamental and Applied Chemistry)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (524.063 KB)

Abstract

ZSM-5 is known as a heterogeneous catalyst in the process of petroleum cracking. Zeolite has narrow pores so it needs synthesis to form mesopore so that reactant molecules can enter the active site in ZSM-5 mesopore. In this study, mesopore formation was carried out by adding Si/Al components with a ratio of 20 derived from tetraethyl orthosilicate, aluminum isopropoxide and TPAOH template with hydrothermal process. The resulting ZSM-5 was characterized using x-ray diffraction, scanning and electron microscopy (SEM). The XRD characterization results showed that the ZSM-5 synthesized to form mesopore was seen from a fairly high peak intensity in the range at 2-theta were 8.11, 9.01°; 23.27°; 23.49°; and 24.13°. The results of this study already have the same structure as the commercial ZSM-5. Characterization of SEM-EDS showed that Si-Al and Na elements in ZSM-5 were 96.43%, 3.56% and 0% wt, respectively. With a magnification of 20000x, this cluster is quite homogeneous even though the crystallization formed is not well aggregated. This ZSM-5 catalyst will be applied to the process of biomass into bio-oil.
The Effect of H-USY Catalyst in Catalytic Cracking of Waste Cooking Oil to Produce Biofuel Rosmawati, Rosmawati; Arita, Susila; Komariah, Leily Nurul; Nazarudin, Nazarudin; Alfernando, Oki
IJFAC (Indonesian Journal of Fundamental and Applied Chemistry) Vol 4, No 2 (2019): June 2019
Publisher : IJFAC (Indonesian Journal of Fundamental and Applied Chemistry)

Show Abstract | Original Source | Check in Google Scholar | Full PDF (256.615 KB)

Abstract

The crisis in petroleum is caused by the diminishing supply of petroleum resources from nature. This phenomenon encourages researchers to continue to look for processes and methods to produce energy from other resources. One of these ways is to produce energy that can be utilized from waste, including converting waste cooking oil into biofuel. This method not only could provide a source of renewable energy, but also help resolve the issue of household waste. The process used to produce biofuel from waste cooking oil is by catalytic cracking, where waste cooking oil after pretreatment is converted into biofuel in the flow reactor with H-USY catalyst. In this research, the reaction temperatures used are 400 °C, 450 °C, 500 °C and 550 °C and reaction times are 30, 45 and 60 minutes with the mass ratio of the amount of waste cooking oil to the amount of catalyst used is 40:1 (w/w). The highest yield of liquid biofuel product was obtained at 60.98%. The use of H-USY catalyst shows that the distribution of components contained in biofuel are 28.02% of diesel products (C17 -C20), 23.96% of gasoline (C6 –C12) and 7.78% of Heavy oil (C20 >) in catalytic cracking of waste cooking oil with a reaction time of 45 minutes at a temperature of 450 °C.