Dani, Andrea Tri Rian
Jambura Journal of Mathematics

Published : 1 Documents
Articles

Found 1 Documents
Search

Penerapan Hierarchical Clustering Metode Agglomerative pada Data Runtun Waktu

Jambura Journal of Mathematics Vol 1, No 2 (2019): Articles in Press
Publisher : Jambura Journal of Mathematics

Show Abstract | Original Source | Check in Google Scholar

Abstract

Analisis cluster merupakan seperangkat metode yang digunakan untuk mengelompokkanobjek ke dalam sebuah cluster berdasarkan informasi yang ditemukan pada data. Analisiscluster dapat diterapkan pada data runtun waktu, di mana terdapat prosedur dan algoritmapengelompokkan yang berbeda dibandingkan dengan pengelompokkan data cross-section.Banyak teknik pengelompokkan data runtun waktu yang dikembangkan di antaranya adalahpenggunaan jarak pengukuran kemiripan yang sesuai dengan karakteristik data runtunwaktu, pemilihan algoritma pengelompokkan yang optimal sampai dengan penentuanbanyaknya cluster yang representatif. Tujuan dari penelitian adalah untuk memperoleh jarakpengukuran kemiripan terbaik, kemudian memperoleh algoritma pengelompokkan metodeagglomerative yang optimal serta memperoleh jumlah cluster yang representatif. Pemilihanjarak pengukuran kemiripan terbaik dan algoritma yang optimal menggunakan koefisienkorelasi cophenetic, sedangkan untuk penentuan jumlah cluster menggunakan koefisiensilhouette. Data pada penelitian adalah data jumlah penduduk Kabupaten/Kota di ProvinsiKalimantan Timur dari Tahun 2005-2017. Berdasarkan hasil analisis, diperoleh jarakpengukuran kemiripan terbaik dalam mengelompokkan Kabupaten/Kota di ProvinsiKalimantan Timur adalah jarak autocorrelation based distance (ACF) dengan nilai koefisienkorelasi cophenetic sebesar 0,99. Algoritma pengelompokkan yang optimal adalah algoritmaaverage linkage, dikarenakan memiliki nilai koefisien korelasi cophenetic yang terbesar diantaraalgoritma pengelompokkan lainnya, dengan jumlah cluster yang representatif berdasarkankoefisien silhouette adalah 2 cluster.